Math, asked by meghana2428, 3 months ago

if secθ + tan θ = m, show that (m²-1)/(m²+1) = sin θ​

Answers

Answered by ganesansubbu100
0

the answer is solved. hope it helps you. mark me as brainalist

Attachments:
Answered by BrainlyTwinklingstar
3

Given that,

secθ + tan θ = m

 \sf ( {m}^{2}  - 1) = (sec \theta + tan \theta)^{2}  - 1

 \sf = sec ^{2}  \theta  + tan^{2}  \theta + 2sec \theta \: tan \theta  - 1

 \sf =( sec ^{2}   \theta - 1)  + tan^{2}  \theta + 2sec \theta \: tan \theta

 \sf =tan^{2}   \theta+ tan^{2}  \theta + 2sec \theta \: tan \theta

 \sf =2tan^{2} \theta + 2sec \theta \: tan \theta

 \sf =2tan\theta (tan \theta  + \: sec \theta) \:  \: ...(1)

similarly,.

 \sf ( {m}^{2}   +  1) = (sec \theta + tan \theta)^{2}   +  1

 \sf = sec ^{2}  \theta  + tan^{2}  \theta + 2sec \theta \: tan \theta   +  1

 \sf =(tan^{2}   \theta  + 1)  + sec^{2}  \theta + 2sec \theta \: tan \theta

 \sf =sec^{2}   \theta+ sec^{2}  \theta + 2sec \theta \: tan \theta

 \sf =2sec {}^{2} \theta + 2sec \theta \: tan \theta

 \sf =2sec\theta (tan \theta  + \: sec \theta) \:  \: ...(2)

From equation (1) and (2)

 \sf  \dfrac{ {m}^{2}  - 1}{ {m}^{2}  + 1}  =  \dfrac{2tan\theta (tan \theta  + \: sec \theta)}{2sec\theta (tan \theta  + \: sec \theta)}

 \sf =  \dfrac{tan\theta }{sec\theta }

 \sf =  \dfrac{ \dfrac{sin \theta}{cos \theta} }{cos \theta}

 \sf =  \dfrac{sin \theta}{cos \theta}  \times cos \theta

 \sf =  sin \theta

Thus,

 \sf  \dfrac{ {m}^{2}  - 1}{ {m}^{2}  + 1}  = sin\theta

Similar questions