Math, asked by arshiyashaik82, 10 months ago

If sec +tan=m, then prove that sin =m2-1/m2+1​

Answers

Answered by sanketj
7

secx + tanx = m  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: (i) \: ... \: (given)\\  \\ we \: know \: that \\  1 +  {tan}^{2} x =  {sec}^{2} x \\  {sec}^{2}x -  {tan}^{2}  x = 1 \\ (secx + tanx)(secx - tanx) = 1 \\ m(secx - tanx) = 1 \\ secx - tanx =  \frac{1}{m}  \:  \:  \:  \:  \:  \:  \:  \: ... \: (ii) \\  \\ adding \: (i)  \: and \: (ii) \\  \\ secx + tanx + secx - tanx =  m +  \frac{1}{m}  \\ 2secx =   \frac{ {m}^{2}  + 1}{m}  \\ secx =  \frac{ {m}^{2} + 1 }{2m}   \\ cosx  =  \frac{2m}{ {m}^{2} + 1}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: (cosx =  \frac{1}{secx} ) \\  {cos}^{2} x =  \frac{ {4m}^{2} }{ {m}^{4} + 1 + 2 {m}^{2}  }  \\   \\ now \\ we \: know \: that \\  \\  {sin}^{2} x +  {cos}^{2} x = 1 \\  {sin}^{2} x = 1 -  {cos}^{2} x \\  {sin}^{2} x = 1 -  \frac{ {4m}^{2} }{ {m}^{4}  + 1 + 2 {m}^{2} }  \\  {sin}^{2} x =  \frac{ {m}^{4} + 1 + 2 {m}^{2}  - 4 {m}^{2}  }{ {( {m}^{2}  + 1)}^{2} }  \\  {sin}^{2} x =  \frac{ {m}^{4}  + 1 - 2 {m}^{2} }{ {( {m}^{2} + 1) }^{2} }  \\  {sin}^{2} x =   \frac{ {( {m}^{2} - 1) }^{2} }{ {( {m}^{2}  + 1)}^{2} }   \\  \\ taking \: square \: root \: on \: both \: sides \\  \\ sinx =   \frac{ {m}^{2}  - 1}{ {m}^{2} + 1 }

... Hence Proved!

Similar questions