Math, asked by riteshsheoran2131, 1 year ago

If secθ + tanθ = p, show that secθ –tanθ = 1/p . Hence, find the values of cosθ and sinθ.

Answers

Answered by bestwriters
0

The values of

\bold{\cos \theta=\frac{2 p}{1+p^{2}}}

\bold{\sin\theta=\frac{1-p^{2}}{1+p^{2}}}

Step-by-step explanation:

From question, the condition given is:

\bold{\sec \theta+\tan \theta=p\longrightarrow(1)}

We know that, \bold{\sec ^{2} \theta-\tan ^{2} \theta=1}

Since, it is similar to \bold{a^{2}-b^{2}} algebraic expression.

On expanding the above algebraic expression, we get,

\bold{a^{2}-b^{2}=(a+b)(a-b)}

a = secθ and b = tanθ

On substituting the value of a and b, we get,

\bold{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)=1}

\bold{(\sec \theta-\tan \theta)=\frac{1}{(\sec \theta+\tan \theta)}}

On substituting the given condition in above equation, we get,

\bold{\sec \theta-\tan \theta=\frac{1}{p}\longrightarrow(2)}

On adding equation (1) and equation (2), we get,

\bold{2 \sec \theta=p+\frac{1}{p}}

\bold{\frac{1}{\sec \theta}=\frac{2}{p+\frac{1}{p}}}

\bold{\therefore\cos \theta=\frac{2 p}{1+p^{2}}}

We know that, \bold{\sin \theta=\sqrt{1-\cos ^{2} \theta}}

\bold{\sin\theta=\sqrt{1-\frac{4 p^{2}}{1+2 p^{2}+p^{4}}}}

\bold{\sin\theta=\sqrt{\frac{1+2 p^{2}-4 p^{2}+p^{4}}{1+2 p^{2}+p^{4}}}}

\bold{\sin\theta=\sqrt{\frac{\left(1-p^{2}\right)^{2}}{\left(1+p^{2}\right)^{2}}}}

\bold{\therefore\sin\theta=\frac{1-p^{2}}{1+p^{2}}}

Similar questions