If Sec + Tan = P then Prove that Sin =
2 −1
2 +1
Answers
Answered by
4
Answer:
p
2
+1
p
2
−1
=
(secθ+tanθ)
2
+1
(secθ+tanθ)
2
−1
sec
2
θ+tan
2
θ+2secθtanθ+1
sec
2
θ+tan
2
θ+2secθtanθ−1
=
sec
2
θ+(tan
2
θ+1)+2secθtanθ
(sec
2
θ−1)+tan
2
θ+2secθtanθ
=
sec
2
θ+sec
2
θ+2secθtanθ
tan
2
θ+tan
2
θ+2secθtanθ
=
2sec
2
θ+2secθtanθ
2tan
2
θ+2secθtanθ
=
2secθ(secθ+tanθ)
2tanθ(tanθ+secθ)
=
2secθ
2tanθ
=tanθ×cosθ
=
cosθ
sinθ
×cosθ
=sinθ
Answered by
0
Answer:
sec t + tant=p__________(1)
sect-tanp=1/p___________(2)
1+2
2 sect=p+1/p
2 sec t=p sq +1/p
sect=p sq +1/2p
cost=2p/p sq +1
sint= p-q/√(p sq +1)
Similar questions