Math, asked by gmanideep48, 2 months ago

If Sec + Tan = P then Prove that Sin =



2 −1

2 +1​

Answers

Answered by SmitaMissinnocent
4

Answer:

p

2

+1

p

2

−1

=

(secθ+tanθ)

2

+1

(secθ+tanθ)

2

−1

sec

2

θ+tan

2

θ+2secθtanθ+1

sec

2

θ+tan

2

θ+2secθtanθ−1

=

sec

2

θ+(tan

2

θ+1)+2secθtanθ

(sec

2

θ−1)+tan

2

θ+2secθtanθ

=

sec

2

θ+sec

2

θ+2secθtanθ

tan

2

θ+tan

2

θ+2secθtanθ

=

2sec

2

θ+2secθtanθ

2tan

2

θ+2secθtanθ

=

2secθ(secθ+tanθ)

2tanθ(tanθ+secθ)

=

2secθ

2tanθ

=tanθ×cosθ

=

cosθ

sinθ

×cosθ

=sinθ

Answered by abhishekkumar8054
0

Answer:

sec t + tant=p__________(1)

sect-tanp=1/p___________(2)

1+2

2 sect=p+1/p

2 sec t=p sq +1/p

sect=p sq +1/2p

cost=2p/p sq +1

sint= p-q/√(p sq +1)

Similar questions