Math, asked by akhilnilkhil143, 5 months ago

If secθ+tanθ=p then what is value of secθ-tanθ​

Answers

Answered by KingzSoul
1

Answer:

Given secA + tan A = p

Recall the identity, sec2A – tan2A = 1

⇒ (secA + tan A)(secA – tanA) = 1

⇒ p × (secA – tanA) = 1

∴ (secA – tanA) = 1/p

Thanks,........

Answered by rohitkhajuria90
0

secθ+tanθ=p

We know that

sec {}^{2} θ - tan {}^{2} θ=1

sec {}^{2} θ - tan {}^{2} θ=1 \\ (secθ+tanθ)(secθ - tanθ) = 1 \\ p(secθ - tanθ) = 1 \\ (secθ - tanθ) =  \frac{1}{p}

Using identity in second statement above

 {a}^{2}  -  {b}^{2}  = (a - b)(a + b)

Similar questions