if secπ+ tanπ = r, then (r^2 -1+2r)/(r^2+1) is equal to
please solve this asap
Answers
mnbvcxzasdfghjklqwer
Answer:
(r²-1+ 2r) / (r²+1) = sinθ + cosθ
Step-by-step explanation:
given, secθ + tanθ = r
=> r² = ( secθ + tanθ)²
=> r² = sec²θ + tan²θ + 2secθtanθ
=> r² = sec²θ + (sec²θ-1) + 2secθtanθ
=> r² = 2sec²θ -1 + 2secθtanθ
=> r² = 2secθ(secθ+ tanθ) -1
=> r² = 2r . secθ -1
=> secθ = (r²+1)/2r -------- (1)
similarly,
r² = ( secθ + tanθ)²
=> r² = sec²θ + tan²θ + 2secθtanθ
=> r² = 1 + tan²θ + tan²θ + 2secθtanθ
=> r² = 1 + 2tan²θ + 2secθtanθ
=> r² = 1 + 2tanθ (tanθ+ secθ)
=> r² = 1 + 2tanθ.r
=> tanθ = (r²-1)/2r ----------------- (2)
so,
secθ / tanθ = [(r²+1)/2r] / [(r²-1)/2r]
=> (1/cosθ) / (sinθ/cosθ) = [(r²+1)/2r] / [(r²-1)/2r]
=> (1/sinθ) = (r²+1) / (r²-1)
=> sinθ = (r²-1) / (r²+1) -------------- (3)
from (1)
secθ = (r²+1)/2r
=> (1/cosθ) = (r²+1)/2r
=> cosθ = 2r / (r²+1) ----------------- (4)
(3) + (4) =>
sinθ + cosθ = (r²-1) / (r²+1) + 2r / (r²+1)
=> sinθ + cosθ = (r²-1+ 2r) / (r²+1)