If (sec θ – tan θ) = root 2 tan θ then prove that (sec θ + tan θ) = root 2 sec θ.
Answers
Answered by
0
Answer:
Step-by-step explanation:
Let A = {θ : tan θ + sec θ = √2 sec θ} and B = {θ : sec θ - tan θ = √2 tan θ} be 2 sets. Then (1) A = B (2) A ⊂ B (3) A ≠ B (4) B ⊂ A
Solution: (1)
tan θ + sec θ = √2 sec θ
sin θ = √2 – 1
sec θ – tan θ = √2 tan θ
sin θ = 1 / (√2 + 1)
sin θ = √2 – 1
A = B
Similar questions
Physics,
1 month ago
Physics,
1 month ago
Physics,
1 month ago
Social Sciences,
2 months ago
Math,
9 months ago