Math, asked by amrutha08, 1 month ago

If sec θ – tan θ= x, show that : sec θ = 1 2 (x + 1 x ) and tan θ = 1 2 ( 1 x − x)

Answers

Answered by medehallharshateja
0

Answer:

fmfndnfoxmamnabcjgmcjfmjf

Step-by-step explanation:

0dc ygfyooyternvnfjsuwooekff

Answered by SukhmaniDhiman
1

Step-by-step explanation:

Answer: Showed

Step-by-step explanation: Given relation is as follows

\sec \theta-\tan \theta=x.secθ−tanθ=x.

We are given to prove the following two results-

\sec \theta=\dfrac{1}{2}(x+\dfrac{1}{x})secθ=

2

1

(x+

x

1

) and \tan \theta=\dfrac{1}{2}(\dfrac{1}{x}-x).tanθ=

2

1

(

x

1

−x).

To prove the above two equalities, we will need the following relation from 'Trigonometry'-

\begin{gathered}\sec^{2}\theta=1+\tan^{2}\theta\\\\\Rightarrow \sec^2\theta-\tan^2\theta=1.\end{gathered}

sec

2

θ=1+tan

2

θ

⇒sec

2

θ−tan

2

θ=1.

Now,

\begin{gathered}\sec \theta=\dfrac{1}{2}(\sec \theta-\tan \theta+\sec \theta+\tan \theta)\\\\\Rightarrow \sec \theta=\dfrac{1}{2}(\sec \theta-\tan \theta+\dfrac{\sec \theta+\tan \theta}{\sec^2\theta-\tan^2\theta})\\\\\Rightarrow \sec \theta=\dfrac{1}{2}(\sec \theta-\tan \theta+\dfrac{1}{\sec \theta-\tan \theta})\\\\\Rightarrow \sec \theta=\dfrac{1}{2}(x+\dfrac{1}{x}),\end{gathered}

secθ=

2

1

(secθ−tanθ+secθ+tanθ)

⇒secθ=

2

1

(secθ−tanθ+

sec

2

θ−tan

2

θ

secθ+tanθ

)

⇒secθ=

2

1

(secθ−tanθ+

secθ−tanθ

1

)

⇒secθ=

2

1

(x+

x

1

),

and

\begin{gathered}\tan \theta=\dfrac{1}{2}(\sec \theta+\tan \theta-\sec \theta+\tan \theta)\\\\\Rightarrow \tan \theta=\dfrac{1}{2}(\dfrac{\sec \theta+\tan \theta}{\sec^2\theta-\tan^2\theta}-\sec \theta+\tan \theta)\\\\\Rightarrow \tan \theta=\dfrac{1}{2}(\dfrac{1}{\sec \theta-\tan \theta}-(\sec \theta-\tan \theta))\\\\\Rightarrow \tan \theta=\dfrac{1}{2}(\dfrac{1}{x}-x).\end{gathered}

tanθ=

2

1

(secθ+tanθ−secθ+tanθ)

⇒tanθ=

2

1

(

sec

2

θ−tan

2

θ

secθ+tanθ

−secθ+tanθ)

⇒tanθ=

2

1

(

secθ−tanθ

1

−(secθ−tanθ))

⇒tanθ=

2

1

(

x

1

−x).

Similar questions