If sec θ + tan θ = x, then sec θ =
(a)
(b)
(c)
(d)
Answers
Answer:
The value of sec θ is (x² + 1)/2x.
Among the given options option (b) (x² + 1)/2x is correct.
Step-by-step explanation:
Given : sec θ + tan θ = x …….. (1)
By using an identity , sec² θ - tan² θ = 1
(sec θ + tan θ)(sec θ - tan θ) = 1
[By using identity , a² - b² = (a + b) (a - b) ]
x (sec θ - tan θ) = 1
(sec θ - tan θ) = 1/x ……….(2)
On adding eq 1 & 2,
sec θ + tan θ + sec θ - tan θ = (x + 1/x)
2 sec θ = (x + 1/x)
2 sec θ = (x² + 1)/x
sec θ = (x² + 1)/2x
Hence, the value of sec θ is (x² + 1)/2x.
HOPE THIS ANSWER WILL HELP YOU…
Answer:
Option (c)
Step-by-step explanation:
Given : secθ + tanθ = x ...(i)
{ As we know that,
sec²θ - tan²θ = 1 }
Now, (secθ - tanθ)(secθ + tanθ) = 1
[ a² - b² = (a - b)(a + b)
[ a² - b² = (a - b)(a + b) Here, a = secθ, b = tanθ ]
(secθ - tanθ)(x) = 1 [using (i)]
secθ - tanθ = 1/x ...(ii)
Subtracting (i) and (ii), we get
→ (secθ + tanθ) - (secθ - tanθ) = x - 1/x
→ secθ + tanθ - secθ + tanθ = (x² - 1)/x
→ 2 tanθ = (x² - 1)/x
tan θ = (x² - 1)/2x