If sec θ - tan θ; y = cosec θ + cot θ then
A. x = ( y + 1 ) / ( y - 1 )
B. x = ( y - 1 ) / ( y + 1 )
C. y = ( 1 + x ) / ( 1 - x )
D. xy + x - y + 1 = 0
Answers
Answered by
8
Answer:
Answer:–
xy+x-y+1=0
Given:–
X=Secθ-tanθ
Y=Cosecθ+Cotθ
Explanation:–
It is given that,
Now,
Take LHS,
➟
➟
➟
Since,
Sin²θ+Cos²θ=1
➟
➟
➟
➟
So,
Now,
↠ x=y-1/y+1
↠ xy+x=y-1
↠ xy+x-y+1=0
And also,
↠ y=1+x/1-x
↠ y-xy=1+x
↠ xy+x-y+1=0
So, The correct option are B, C and D.
Answered by
139
❥ Question :
If sec θ - tan θ; y = cosec θ + cot θ then
A. x = ( y + 1 ) / ( y - 1 )
B. x = ( y - 1 ) / ( y + 1 )
C. y = ( 1 + x ) / ( 1 - x )
D. xy + x - y + 1 = 0
❥ Answer :
Step - 1 :
⇒ xy + 1= y −x
Step - 2 :
→ Solve for x in xy + 1= y −x
Hence is correct
Glad to help a moderator
Similar questions