Math, asked by Anonymous, 8 months ago

If sec θ - tan θ; y = cosec θ + cot θ then

A. x = ( y + 1 ) / ( y - 1 )
B. x = ( y - 1 ) / ( y + 1 )
C. y = ( 1 + x ) / ( 1 - x )
D. xy + x - y + 1 = 0

Answers

Answered by Mounikamaddula
8

Answer:

Answer:

xy+x-y+1=0

Given:

X=Secθ-tanθ

Y=Cosecθ+Cotθ

Explanation:

It is given that,

x = secθ - tanθ

x =  \frac{1 -  \sinθ}{cosθ}

y = cosecθ + cotθ

y =  \frac{1 + cosθ}{sinθ}

Now,

xy + x - y + 1 = 0

Take LHS,

xy + x - y + 1

( \frac{1 - sinθ}{cosθ} )( \frac{1 + cosθ}{sinθ} ) + 1  +  \frac{1 - sinθ}{cosθ}  - ( \frac{1 + cosθ}{sinθ} )

 \frac{1 - sinθ + cosθ - sinθ.cosθ + sinθ.cosθ}{sinθ.cosθ} +  \frac{1 - sinθ}{cosθ}  - ( \frac{1 + cosθ}{sinθ})

Since,

Sin²θ+Cos²θ=1

 \frac{ {sin}^{2}θ +  {cos}^{2}θ - sinθ + cos θ }{sinθ.cosθ} + (secθ - tanθ) - (cosecθ + cotθ)

 \frac{ {sin}^{2}θ +  {cos}^{2} θ }{sinθ.cosθ}  - ( \frac{sinθ - cosθ}{sinθ.cosθ} ) + secθ - tanθ - cosecθ - cotθ

(tanθ + cotθ) - (secθ - cosecθ) + secθ - tanθ - cosecθ - cotθ

 0

So,

xy + x - y + 1 = 0

Now,

x=y-1/y+1

↠ xy+x=y-1

↠ xy+x-y+1=0

And also,

↠ y=1+x/1-x

↠ y-xy=1+x

↠ xy+x-y+1=0

So, The correct option are B, C and D.

Answered by Anonymous
139

❥ Question :

If sec θ - tan θ; y = cosec θ + cot θ then

A. x = ( y + 1 ) / ( y - 1 )

B. x = ( y - 1 ) / ( y + 1 )

C. y = ( 1 + x ) / ( 1 - x )

D. xy + x - y + 1 = 0

❥ Answer :

                                                                               

Step - 1 :

\bf{\text { Given } x=\sec \theta-\tan \theta=\dfrac{1-\sin \theta}{\cos \theta}{

\bf{y={cosec} \theta+\cot \theta=\dfrac{1+\cos \theta}{\sin \theta}}

\bf{\text { xy }+1=\left(\dfrac{1-\sin \theta}{\cos \theta}\right)\left(\dfrac{1+\cos \theta}{\sin \theta}\right)+1=\dfrac{1-\sin \theta+\cos \theta}{\sin \theta \cos \theta}}

\bf{=\dfrac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\sin \theta \cos \theta}-\dfrac{(\sin \theta-\cos \theta)}{\sin \theta \cos \theta}}

\bf{=(tan \theta+\cot \theta)-(\sec \theta-{cosec} \theta)}

\bf{=({cosec} \theta+\cot \theta)-(\sec \theta-\tan \theta)=y-x }

⇒ xy + 1= y −x

                                                                               

Step - 2 :

→ Solve for x in xy + 1= y −x

\mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}

xy+1-1=y-x-1

\Rightarrow xy=y-x-1

\mathrm{Add\:}x\mathrm{\:to\:both\:sides}

xy+x=y-x-1+x

\Rightarrow xy+x=y-1

\mathrm{Factor}\:xy+x:

\mathrm{Factor\:out\:common\:term\:}x

=x\left(y+1\right)

x\left(y+1\right)=y-1

\mathrm{Divide\:both\:sides\:by\:}y+1;\quad \:y\ne \:-1

\dfrac{x\left(y+1\right)}{y+1}=\dfrac{y}{y+1}-\dfrac{1}{y+1};\quad \:y\ne \:-1

\bf{x=\dfrac{y-1}{y+1};\quad \:y\ne \:-1}

\star Hence \bf{x=\dfrac{y-1}{y+1}  is correct \star

Glad to help a moderator

Similar questions