if sec teta = 5/4 then show that ( sin teta - 2cos teta) / (ten teta - cos teta ) = 12/7
Answers
Step-by-step explanation:
given equation is \frac{cos x+ sin x}{cos x - sin x} -\frac{cos x - sin x}{cos x + sin x}
cosx−sinx
cosx+sinx
−
cosx+sinx
cosx−sinx
taking LCM we get \frac{(cos x + sin x)*(cos x + sin x) - (cos x - sinx )*(cos x - sin x)}{(cos x - sin x)*(cos +sin x)}
(cosx−sinx)∗(cos+sinx)
(cosx+sinx)∗(cosx+sinx)−(cosx−sinx)∗(cosx−sinx)
=\frac{(cos x + sin x)^{2} - (cos x - sin x)^{2}}{cos^{2}x - sin^{2}x}
cos
2
x−sin
2
x
(cosx+sinx)
2
−(cosx−sinx)
2
=\frac{cos ^{2}x+sin^{2}x+2cos x sin x- cos^{2}x-sin^{2} x +2 cos x sinx}{cos 2x}
cos2x
cos
2
x+sin
2
x+2cosxsinx−cos
2
x−sin
2
x+2cosxsinx
since cos²∅-sin²∅=cos2∅
= \frac{4 cos x sin x}{cos 2x}
cos2x
4cosxsinx
= \begin{lgathered}\frac{2 sin2x}{cos 2x}\\\end{lgathered}
cos2x
2sin2x
since 2sin∅cos∅ = sin 2∅
= 2 tan2x