Math, asked by supriyasuresh1254, 10 months ago

If sec teta+tan teta=p, prove that sin teta=p^2-1/p^2+1

Answers

Answered by Anonymous
3

\huge\underline\mathfrak\orange{answer}

P = tanФ + secФ

p - secФ = tanФ

p² + sec²Ф - 2 p secФ = tan²Ф = sec²Ф - 1

So secФ = (p² + 1) / 2p

so cosФ = 2p/(1+p²)

sinФ = √[1 - cos²Ф ] = (p²-1)/(1+p²)

<marquee> naancysingh12

Answered by zakirhussain786
4

Answer:

Hence proved..

sin teta=p^2-1/p^2+1

Attachments:
Similar questions