Math, asked by kantatopno844, 6 months ago

if sec tetha+tan tetha=p, prove that sin tetha=p²-1/p²+1​

Answers

Answered by TheValkyrie
4

Answer:

Step-by-step explanation:

\Large{\underline{\rm{Given:}}}

  • sec θ + tan θ = p

\Large{\underline{\rm{To\:Prove:}}}

\sf{sin\:\theta=\dfrac{p^{2} -1}{p^{2}+1 }}

\Large{\underline{\rm{Identities\:used:}}}

(a + b)² = a² + b² + 2ab

sec²θ - 1 = tan²θ

tan²θ + 1 = sec²θ

tan θ = sinθ/cos θ

1/ sec θ = cos θ

\Large{\underline{\rm{Proof:}}}

We know that sec θ + tan θ = p.

We have to prove that,

\sf{sin\: \theta=\dfrac{p^{2} -1}{p^{2}+1 }}

Taking the RHS of the above equation,

\sf{\dfrac{p^{2} -1}{p^{2}+1 }}

Substitute the value of p from given,

\sf{\dfrac{(sec\theta+tan\theta)^{2} -1}{(sec\theta+tan\theta)^{2}+1 }}

Expanding by using identities,

\sf{\dfrac{(sec^{2} \theta+tan^{2} \theta+2\:sec\theta\:tan\theta) -1}{(sec^{2} \theta+tan^{2} \theta+2\:sec\theta\:tan\theta)+1 }}

Again applying identities,

\sf{\dfrac{tan^{2} \theta+tan^{2} \theta+2\:sec\theta\:tan\theta}{sec^{2} \theta+sec^{2} \theta+2\:sec\theta\:tan\theta }}

\sf{\dfrac{2tan^{2} \theta+2\:sec\theta\:tan\theta}{2sec^{2} \theta+2\:sec\theta\:tan\theta }}

Taking 2 tanθ common from numerator and 2 secθ common from denominator,

\sf{\dfrac{2tan\theta(tan\theta+sec\theta)}{2sec \theta(sec\theta+tan\theta) }}

Cancelling tanθ + sec theta and 2 on both numerator and denominator,

\sf{\dfrac{tan\theta}{sec\theta} =\dfrac{sin\theta}{cos\theta}\times \dfrac{1}{sec\theta}  }

= sin θ

Hence LHS = RHS

Hence proved.

Answered by Anonymous
2

\Large{\underline{\rm{Given:}}}

sec θ + tan θ = p

\Large{\underline{\rm{To\:Prove:}}}

\sf{sin\:\theta=\dfrac{p^{2} -1}{p^{2}+1 }}

\Large{\underline{\rm{Identities\:used:}}}

(a + b)² = a² + b² + 2ab

sec²θ - 1 = tan²θ

tan²θ + 1 = sec²θ

tan θ = sinθ/cos θ

1/ sec θ = cos θ

\Large{\underline{\rm{Proof:}}}

We know that sec θ + tan θ = p.

We have to prove that,

\sf{sin\: \theta=\dfrac{p^{2} -1}{p^{2}+1 }}

Taking the RHS of the above equation,

\sf{\dfrac{p^{2} -1}{p^{2}+1 }}

Substitute the value of p from given,

\sf{\dfrac{(sec\theta+tan\theta)^{2} -1}{(sec\theta+tan\theta)^{2}+1 }} </p><p>

Expanding by using identities,

\sf{\dfrac{(sec^{2} \theta+tan^{2} \theta+2\:sec\theta\:tan\theta) -1}{(sec^{2} \theta+tan^{2} \theta+2\:sec\theta\:tan\theta)+1 }}

Again applying identities,

\sf{\dfrac{tan^{2} \theta+tan^{2} \theta+2\:sec\theta\:tan\theta}{sec^{2} \theta+sec^{2} \theta+2\:sec\theta\:tan\theta }}

\sf{\dfrac{2tan^{2} \theta+2\:sec\theta\:tan\theta}{2sec^{2} \theta+2\:sec\theta\:tan\theta }}

Taking 2 tanθ common from numerator and 2 secθ common from denominator,

\sf{\dfrac{2tan\theta(tan\theta+sec\theta)}{2sec \theta(sec\theta+tan\theta) }} </p><p>

Cancelling tanθ + sec theta and 2 on both numerator and denominator,

\sf{\dfrac{tan\theta}{sec\theta} =\dfrac{sin\theta}{cos\theta}\times \dfrac{1}{sec\theta} }

Hence LHS = RHS

Hence proved.

Similar questions