Math, asked by meenakshireddy3042, 1 year ago

If sec tetha=x+1/4x find the value of sec tetha+tan tetha

Answers

Answered by dorri
3
<br />&lt;u&gt;<br />&lt;b&gt;<br />Here's your answer<br />&lt;/b&gt;<br />&lt;/u&gt;<br />

sec = x + \bf\frac{1}{4x} (given)

As we know

1 + tan^2\thita = sec^2\thita

=>tan² = (x + \bf\frac{1}{4x})² - 1

=>tan² = x² + \bf\frac{1}{16x} + 2(x)(\bf\frac{1}{4x})

=>x² + \bf\frac{1}{16x} - \bf\frac{1}{2}

=> (X - \bf\frac{1}{4x}

thus,\boxed{\bf {tan = (x- \bf\frac{1}{4x^2}) or -(x -\bf\frac{1}{4x^2})}}

\bf\underline{Now\: putting\: the\: values}

sec + tan = x + \bf\frac{1}{4x} + x - \bf\frac{1}{4x}

= 2x

sec + tan = x + \bf\frac{1}{4x} -(x - \bf\frac{1}{4x})

= \bf\frac{1}{2x}

&lt;marquee&gt;Hope it helps you :)&lt;/marquee&gt;

# \underline{Be Brainly}
Similar questions