Math, asked by diksha6297, 8 months ago

if sec theata +tan theata=p show that p^2-1/o^2+1 = sin theta​

Answers

Answered by 1FiNiX1
1

Answer:

We have ,

sec\theta + tan\theta = psecθ+tanθ=p ----(1)

Now,

sec^{2}\theta-tan^{2}\theta = 1sec

2

θ−tan

2

θ=1

\implies (sec\theta + tan\theta)(sec\theta - tan\theta)=1⟹(secθ+tanθ)(secθ−tanθ)=1

\implies p\times (sec\theta - tan\theta)=1⟹p×(secθ−tanθ)=1

\implies sec\theta + tan\theta = \frac{1}{p}⟹secθ+tanθ=

p

1

--(2)

Adding and subtracting (1) and (2) , we get

2sec\theta = \frac{(p^{2}+1)}{p}2secθ=

p

(p

2

+1)

---(3)

2tan\theta = \frac{(p^{2}-1)}{p}2tanθ=

p

(p

2

−1)

---(4)

on dividing equation (4) by (3), we get

\frac{2tan\theta}{2sec\theta}=\frac{\frac{(p^{2}-1)}{p}}{\frac{(p^{2}+1)}{p}}

2secθ

2tanθ

=

p

(p

2

+1)

p

(p

2

−1)

\implies \frac{\frac{sin\theta}{cos\theta}}{\frac{1}{cos\theta}}= \frac{\frac{(p^{2}-1)}{p}}{\frac{(p^{2}+1)}{p}}⟹

cosθ

1

cosθ

sinθ

=

p

(p

2

+1)

p

(p

2

−1)

After cancellation, we get

sin\theta = \frac{\frac{(p^{2}-1)}{p}}{\frac{(p^{2}+1)}{p}}sinθ=

p

(p

2

+1)

p

(p

2

−1)

Answered by lion7979
3

Answer:

Thank you siso.........For supporting me ......

Thank you so much

......

:-)

Similar questions