Math, asked by as9707011, 1 month ago


If sec theta=13/12 find cos theta sin theta​

Answers

Answered by aryaabhijeet53
3

Answer:

 \sec \alpha  = 13 \div 12 \\  \sec \alpha  = h \div b \\ h = 13 \: b = 12 \\ p =  \sqrt{h {}^{2} } - b {}^{2}  \\ p =   \sqrt{13 {}^{2} } - 12 { }^{2}  \\ p =   \sqrt{169 - 144 }  \\ p =  \sqrt{25}  \\ p = 5 \\  \\  \cos( \alpha )  = b  \div h \\  = 12 \div  13 \\  \sin( \alpha )  = p \div h \\  = 5 \div 13

 \cos( \alpha )  = b \div h \\  = 12 \div 13 \\  \sin( \alpha)  = p \div h \\  = 5 \div 13

Answered by amitkumarswain2005
1

 \sec \: theta =  \frac{13}{12}  \\ cos \: theta  =  \frac{1}{sec \: theta}  \\   \:  \:  \:  \:  \: =  \frac{12}{13}  \\ sin \: theta =  \sqrt{1 -  {cos}^{2} theta}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \sqrt{1 -  (\frac{12}{13}}) ^{2} \\ =  \sqrt{1 -  \frac{144}{169}  }  \\  =  \sqrt{ \frac{25}{169} }  \\  =  \frac{5}{13}

here is your answer.

Similar questions