Math, asked by anchuxia82, 11 months ago

If sec theta=13/12 then find the value of root 1-sin^2 theta​

Answers

Answered by master55538
5

Answer:

secx=13/12

cosx= 12/13

sinx=5/13

we want , ......where x=theta

(1-sin^2x)^2=1-25/169

=169-25/169

=144/169

=√144/√169

=12/13

=cosx=cos theta

Answered by harendrachoubay
3

The value of \sqrt{1-\sin^2 \theta} = \dfrac{12}{13}

Step-by-step explanation:

We have,

\sec \theta=\dfrac{13}{12}     ..... (1)

To find, the value of \sqrt{1-\sin^2 \theta} = ?

\sqrt{1-\sin^2 \theta}

Using the trigonometric identity,

\sin^2 A+\cos^2 A = 1

\cos^2 A= 1 -\sin^2 A

= \sqrt{\cos^2 \theta}

= \cos \theta

Using the trigonometric identity,

\cos A=\dfrac{1}{\sec A}

Using equation (1), we get

= \dfrac{12}{13}

The value of \sqrt{1-\sin^2 \theta} = \dfrac{12}{13}

Thus, the value of \sqrt{1-\sin^2 \theta} = \dfrac{12}{13}

Similar questions