Math, asked by dakshisj9644, 9 months ago

if sec theta = 13/5, show that 2sintheta - 3costheta/4sintheta - 9costheta = 3

Answers

Answered by Anonymous
2

 =  > sec \: a \:  =  \frac{13}{5}  \\  \\   =  > \frac{1}{cos \: a}  =  \frac{5}{13}  \\  \\ sin \: a =   \sqrt{1 -  {( \frac{5}{13} )}^{2} }   \\  \\  =  \sqrt{ \frac{144}{169} }  \\  \\  =  \frac{12}{13}  \\  \\ tan \: a \:  =  \frac{sin \: a}{cos \: a}  = >   \frac{12}{5}  \\  \\  \\ taking \: lhs \\  =   \frac{2sin \: a \:  - 3 \: cos \: a}{4sin \: a - 9cos \: a}   \\  \\ =  \frac{2tan \: a - 3}{4tan \: a - 9} \:\:(divide\: by\: cos\:a)  \\  \\  =  \frac{2 \times  \frac{12}{5} - 3 }{4 \times  \frac{12}{5}  - 9}  \\ \\   =  \frac{24 - 15}{48 - 45}  \\  \\  =  \frac{9}{3}  \\  \\  = 3 \\  \\= rhs

Similar questions