Math, asked by Ankityadav2228, 1 year ago

if sec theta =13 upon 5 show that (2 sin theta-3cos theta ) upon (4 sin theta -9 cos theta ) =3

Answers

Answered by hafiz023
2

let theta=x

secx=13/5

cosx=5/13

sinx12/13(pythagores theorem)

given

=2sinx-3cosx/4sinx-9cosx

=

 \frac{2 \times \frac{12}{13} - 3 \times  \ \frac{5}{13} }{4 \times  \frac{12}{13} - 9 \times  \frac{5}{13}  }

=

 \frac{ \frac{9}{13} }{ \frac{3}{13} }

=3

hence proved

Answered by veerukhugar
10

Hey mate here we go

given \: sec \: theta \:  =  \frac{13}{5}  \\  \: but \: we \: know \: that \:   \\ \cos \: theta \:  =  \frac{1}{ \sec \: theta }  \\ cos \: theta =  \frac{1}{ \frac{13}{5} }  =  \frac{5}{13}  \\ we \: can \: find \: sin \: theta \: by  \\ \: pythogarus \: theorem \\ sin \: theta \:  = \frac{12}{13}  \\  \\ nw \: given \: problem \: is \: that \\   3 = \frac{2sint \: theta - 3cos \: theta}{4sin \: theta - 9cos \: theta}   \\  3=  \frac{2 \times  \frac{12}{13} - 3 \times  \frac{5}{13}  }{4 \times  \frac{12 }{13} - 9 \times  \frac{5}{13}  }   \\ 3 =  \frac{ \frac{24}{13}  -  \frac{15}{13} }{ \frac{48}{13}  -  \frac{45}{13} }  \\  3 =  \frac{ \frac{9}{13} }{ \frac{3}{13} }  \\   3= \frac{9}{13}  \times  \frac{13}{3}  \\ 3 = 3 \\  \\ hence \: proved \: ur \: ans \\  \\

I hope this will helps you

Mark my ans as brainliest

Similar questions