if sec theta =2 / root 3 ,then find the value of 1- cos theta / 1+ cos theta
Answers
S O L U T I O N :
Given :
sec Ѳ = 2/√3
Explanation :
According to the question attachment a figured of right angled triangle.
As we know that sec Ѳ = Hypotenuse/base = AC/AB
sec Ѳ = 2/√3 = AC/AB
Using by Pythagoras Theorem :
➝ (Hypotenuse)² = (Base)² + (Perpendicular)²
➝ (AC)² = (AB)² + (BC)²
➝ (2)² = (√3)² + (BC)²
➝ 4 = √3 × √3 + (BC)²
➝ 4 = 3 + (BC)²
➝ (BC)² = 4 - 3
➝ (BC)² = 1
➝ BC = √1
Now,
➝ 1 - cos Ѳ/1 + cos Ѳ
➝ 1 - AB/AC/1 + AB/AC
➝ 1 - √3/2/1 + √3/2
➝ 2-√3/2/2 + √3/2
➝ 2 - √3/2 × 2/2 + √3
➝ 2 - √3/2 + √3
- Rationalisation :
➝ 2 - √3/2 + √3 × 2- √3/2 - √3
➝ (2 - √3)²/(2)² - (√3)²
➝ (2)² + (√3)² - 2 × 2 × √3/4 - 3
➝ 4 + 3 - 4√3 / 1
➝ 7 - 4√3/1
➝ 7 - 4√3
Thus,
The value of 1 - cos Ѳ/1 + cos Ѳ will be 7 - 4√3 .
Sec θ = then we have to find the value of
Sec θ =
= 7 - 4√3
We know that sec θ =
Using phythagoras theorm
➨ (Hypotenuse)² = (Base)² + (Perpendicular)²
➨ (XZ)² = (XY)² + (YZ)²
➨ (2)² = ( )² + (YZ)²
➨ 4 = × + (YZ)²
➨ 4 = 3 + (YZ)²
➨ 4 - 3 = (YZ)²
➨ 1 = (YZ)²
➨ √1 = YZ
➨ YZ = √1
Now according to the question
➨
➨ 1 - XY / XZ / 1 + XY / XZ
➨ 1 - √3/2/1 + √3/2
➨ 2 - √3/2/2 + √3/2
➨ 2 - √3/2 × 2/2 + √3
➨ 2 - √3/2 + √3
Now let's relationalize
➨ (2-√3)² / (2)² - (√3)²
➨ (2)² + (√3)² - 2 × 2 × √3/4 - 3
➨ 4 + 3 - 4√3 / 1
➨ 7 - 4√3 / 1
➨ 7 - 4√3
- Henceforth, 7-4√3 is the value of