Math, asked by harissayed15, 4 months ago

if sec theta =2 ,then find : (a) cot theta + cosec theta ​

Answers

Answered by Ataraxia
15

Given :-

\sf sec \theta = 2

To Find :-

\sf cot \theta + cosec \theta

Solution :-

We know :-

\sf cos\theta = \dfrac{1}{sec \theta }

\sf\therefore cos \theta = \dfrac{1}{2}

We know :-

\bf sin^2 \theta +cos^2 \theta= 1

\longrightarrow \sf sin^2 \theta + \left( \dfrac{1}{2} \right)^2= 1 \\\\\longrightarrow sin^2 \theta +\dfrac{1}{4} = 1 \\\\\longrightarrow sin^2 \theta = 1 - \dfrac{1}{4} \\\\\longrightarrow sin^2 \theta = \dfrac{4-1}{4} \\\\\longrightarrow sin^2 \theta = \dfrac{3}{4}\\\\\longrightarrow sin \theta = \sqrt{\dfrac{3}{4}} \\\\\longrightarrow sin \theta = \dfrac{\sqrt{3} }{2}

\bullet \bf \ cosec \theta = \dfrac{1}{sin \theta }

\longrightarrow \sf cosec \theta = \dfrac{2}{\sqrt{3} }

\bullet \bf \ cot \theta = \dfrac{cos \theta }{sin \theta }

\longrightarrow \sf cot\theta = \dfrac{1}{2} \times \dfrac{2}{\sqrt{3} }\\\\\longrightarrow cot \theta = \dfrac{1}{\sqrt{3} }

\sf cot \theta + cosec \theta = \dfrac{1}{\sqrt{3}} +\dfrac{2}{\sqrt{3}}

                     = \sf \dfrac{1+2}{\sqrt{3}} \\\\= \dfrac{3}{\sqrt{3}} \\\\= \dfrac{3}{\sqrt{3}} \times \dfrac{\sqrt{3}} {\sqrt{3}} \\\\= \dfrac{3 \sqrt{3}}{3} \\\\=\bf \sqrt{3}

             

Similar questions