Math, asked by maheswariswain2007, 7 days ago

If sec theta = 3/2 find 2cos²theta + 2cot²theta -9

Answers

Answered by jitendra12iitg
1

Answer:

The answer is -\frac{293}{45}

Step-by-step explanation:

Given \displaystyle \sec\theta=\frac{3}{2}

\displaystyle \Rightarrow \cos^2\theta=\frac{1}{\sec^2\theta}=\frac{4}{9}

Also we know  \sec^2\theta-\tan^2\theta=1

                  \displaystyle \Rightarrow \frac{9}{4}-\tan^2\theta=1\\\Rightarrow \tan^2\theta=\frac{9}{4}-1=\frac{5}{4}

\displaystyle \Rightarrow \cot^2\theta=\frac{1}{\tan^2\theta}=\frac{4}{5}

Therefore  2\cos^2\theta+2\cot^2\theta-9

                \displaystyle =2\times \frac{4}{9}+2\times \frac{4}{5}-9

                 \displaystyle =\frac{40+72}{45}-9=\frac{112}{45}-9=\frac{112-405}{45}=-\frac{293}{45}

Similar questions