Math, asked by gm3506770, 3 months ago

if sec theta = √3 find cot theta and sin theta of trigonometry ratio.​

Answers

Answered by sharanyalanka7
3

Answer:

cot\theta=\dfrac{1}{\sqrt{2}}

sin\theta=\dfrac{\sqrt{2}}{\sqrt{3}}

Step-by-step explanation:

Given,

sec\theta=\sqrt{3}

To Find :

cot\theta,sin\theta

Solution :-

We know that :-

sec\theta=\dfrac{hypotenuse}{adjacent\:side}

\implies \dfrac{\sqrt{3}}{1}=\dfrac{hypotenuse}{adjacent\:side}

Hypotenuse = √3 , adjacent side = 1

Let ,

opposite side be 'x'

We know that :-

(hypotenuse)^2=(adjacent\:side)^2+(opposite\:side)^2

(\sqrt{3})^2=1^2+x^2

3 = 1 + x^2

x^2 = 3 - 1

x^2=2

opposite\:side=x=\sqrt{3}

cot\theta=\dfrac{adjacent\:side}{hypotenuse}

cot\theta=\dfrac{1}{\sqrt{2}}

sin\theta=\dfrac{opposite\:side}{hypotenuse}

sin\theta=\dfrac{\sqrt{2}}{\sqrt{3}}

Similar questions