Math, asked by niteshkumarsinha2004, 8 months ago

if sec theta = 5/ 4 verify that tan theta / 1+ tan square theta = sin theta / sec theta.​

Answers

Answered by SainaYasmin
0

Step-by-step explanation:

Given- Sec theta= 5/4

hypotenuse = 5

adjacent side = 4

Then by Pythagoras theorem-

oppsite side = root ((5)^2 - (4)^2)

= root (25 - 16)

= root 9

opposite side = 3

tan theta = 3/4

sin theta = 3/5

(3 \div 4 )\div 1 +( 3 \div 4) ^{2}(3÷4)÷1+(3÷4)

2

3/4 ÷ 1 + 9/16

3/4 ÷ 25/16

= 12/25 = LHS

3/5 ÷ 5/4

= 12/25 = RHS

LHS = RHS

Hence Proved

Hope it helps

Please mark it as the brainliest

Cheers

Answered by Anonymous
10

Step-by-step explanation:

\sf\large\underline\purple{Given:-}

Here,

 \displaystyle \star \:  \sin( \theta)  =  \frac{5}{4}

\sf\large\underline\purple{Solution:-}

 \displaystyle \sf \tt \implies \:   \frac{\tan( \theta)}{1 +  \tan( \theta) }   =  \frac{ \sin( \theta) }{ \sec( \theta ) }  \\  \\   \\

By using LHS,

\displaystyle \star \sf \:  \sin( \theta)  =  \frac{p}{h}  =  \frac{5}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \displaystyle \sf \star \: then \: b \:  = 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \\  \\ \displaystyle \star \sf \:  \frac{ \tan( \theta) }{1 +  \tan( \theta) }  =    \frac{ \frac{3}{4} }{ \frac{16 + 9}{16} }  =  \frac{12}{25}

By using RHS,

 \displaystyle \sf \star \:  \sin( \theta) . \ \cos( \theta)   =  \frac{3}{5}  \times  \frac{4}{5}  =  \frac{12}{25}

Hence LHS = RHS

Verified

Similar questions