Math, asked by Niishi5114, 9 months ago

If sec(theta+alpha)+sec(theta-alpha)=2sec theta and cos alpha is not equal to 1 then show that cos theta=+- root2 cos alpha/2

Answers

Answered by sunny177668
42

please refer above pic.

Hope it helps you.

please mark the brainlist.

Attachments:
Answered by swethassynergy
2

It is showed  that  cos\theta = \± \sqrt{2 \cos\frac{\alpha }{2} }.

Step-by-step explanation:

Given:

If sec(\theta+\alpha ) +sec(\theta -\alpha ) =2 sec\theta.

cos\alpha \neq 1.

To Find:

It is to be showed that cos\theta = \± \sqrt{2 \cos\frac{\alpha }{2} }.

Identity Used:

Cos A + Cos B = 2 Cos \frac{(A+B)}{2}  . Cos\frac{(A-B)}{2}

2Cos A \ Cos B =Cos (A + B) - Cos (A -B)

cos2\theta = 2 cos^{ 2} \theta-1

Solution:

As given- sec(\theta+\alpha ) +sec(\theta -\alpha ) =2 sec\theta.

sec(\theta+\alpha ) +sec(\theta -\alpha ) =2 sec\theta

\frac{1}{cos(\theta+\alpha )} +\frac{1}{cos(\theta-\alpha )} =\frac{2}{cos \theta}

\frac{cos(\theta-\alpha )+cos(\theta+\alpha )}{cos(\theta+\alpha) cos(\theta-\alpha )}   =\frac{2}{cos \theta}\\

\frac{ 2\times 2 cos\theta cos\alpha }{cos(\theta+\alpha+ \theta-\alpha )+ cos(\theta+\alpha - \theta+\alpha  )}   =\frac{2}{cos \theta}\\

\frac{ 2\times 2 cos\theta cos\alpha }{cos2 \theta+ cos2\alpha }   =\frac{2}{cos \theta}\\

2cos^{2} \theta\  cos\alpha  = cos2\theta + cos2\alpha

2cos^{2} \theta\  cos\alpha  = 2cos^{2}\theta-1  + 2cos^{2}\alpha -1

2cos^{2} \theta\  (cos\alpha-1)  =  2cos^{2}\alpha -2

cos^{2} \theta =\frac{cos^{2}\alpha -1}{cos\alpha-1}

cos^{2} \theta =cos\alpha +1

cos^{2} \theta =2cos^{2} {(\frac{\alpha }{2} )}

cos\theta = \± \sqrt{2 \cos\frac{\alpha }{2} }

Hence, it is It is showed  that  cos\theta = \± \sqrt{2 \cos\frac{\alpha }{2} }.

Similar questions