If sec theta + cos theta =2 find sec square theta +codex square theta
Answers
Answer:
Explanation:EXPLANATION(Long):
Sec(theta) + cos(theta) = 5/2
Sec(theta) + 1/sec(theta) = 5/2
(sec^2(theta)+1) / sec(theta) = 5/2
2sec^2(theta) + 2 = 5sec(theta)
2sec^2(theta) - 5sec(theta) + 2 = 0
Let sec(theta)=x
then,
2x^2 - 5x + 2 = 0
2x^2 - (4+1)x + 2 = 0
2x^2 - 4x -x + 2 = 0
2x(x-2)-1(x-2)=0
(2x-1)(x-2)=0
Either (2x-1)=0 => x=1/2 => sec(theta)=1/2 [Since sec(theta)=x]
Or (x-2)=0 => x=2 => sec(theta)=2 [Since sec(theta)=x]
Then sec(theta) = 1/2 or 2
Case 1: sec(theta) = 1/2
Now we have Sec(theta) + cos(theta) = 5/2
1/2 + cos(theta) = 5/2
cos(theta) =(5/2 - 1/2)
cos(theta)=2
then,
Sec(theta) - cos(theta) = (1/2 - 2) = -3/2
Case 2: sec(theta) = 2
Now we have Sec(theta) + cos(theta) = 5/2
2 + cos(theta) = 5/2
cos(theta) =(5/2 - 2)
cos(theta)=1/2
then,
Sec(theta) - cos(theta) = (2 - 1/2) = 3/2
therefore
sec(theta) - cos(theta)=3/2 or-3/2
—————————————————————————————
Ans2:
EXPLANATION(Shortcut):
Sec(theta) + cos(theta) = 5/2
(Sec(theta) + cos(theta))^2 = (5/2)^2
Sec(theta)^2 + cos(theta)^2 + 2*Sec(theta)*cos(theta) = 25/4
Sec(theta)^2 + cos(theta)^2 + 2*Sec(theta)*(1/Sec(theta)) = 25/4
Sec(theta)^2 + cos(theta)^2 + 2 = 25/4
[Sec(theta)^2 + cos(theta)^2 + 2]- 4 = [25/4] - 4 [Subtracting both sides by 4]
Sec(theta)^2 + cos(theta)^2 - 2 = 9/4
Sec(theta)^2 + cos(theta)^2 - 2*Sec(theta)*(1/Sec(theta)) = 9/4
Sec(theta)^2 + cos(theta)^2 - 2*Sec(theta)*cos(theta) = 9/4
(Sec(theta) - cos(theta))^2 = (3/2)^2
Sec(theta) - cos(theta) = +-3/2