Math, asked by Anonymous, 11 months ago

If sec theta - cos theta =2, then find sec^4 theta + cos^4 theta

Answers

Answered by harendrachoubay
19

The value of \sec^4 \theta +\cos^4 \theta=34.

Step-by-step explanation:

We have,

\sec \theta-\cos \theta=2                           ......(1)

To find, the value of \sec^4 \theta +\cos^4 \theta=?

Squaring (1) in both sides, we get

(\sec \theta-\cos \theta)^{2} =2^{2}

\sec ^{2} \theta+\cos \theta^{2} -2\sec\theta\cos \theta=4

\sec ^{2} \theta+\cos \theta^{2} -2(1)=4

[ ∵sec\theta\cos \theta=1]

\sec ^{2} \theta+\cos ^{2} \theta=4+2=6    ....(2)

Again, squaring (2) in both sides, we get

(\sec ^{2} \theta+\cos^{2} \theta )^{2} =6^{2}

\sec ^{4} \theta+\cos \theta^{4} +2\sec^{2} \theta\cos^{2} \theta=36

\sec ^{4} \theta+\cos \theta^{4} +2(1)=36

\sec ^{4} \theta+\cos \theta^{4} =36-2=34

Hence, the value of \sec^4 \theta +\cos^4 \theta=34.

Similar questions