Math, asked by Asmabegum6808, 1 year ago

if sec theta is equals to M + n bi to root m n find sin theta​

Answers

Answered by harendrachoubay
0

\sin \theta =\dfrac{m-n}{m+n}}

Step-by-step explanation:

We have,

\sec \theta=\dfrac{m+n}{2\sqrt{mn}}

To find, the value of \sin \theta =?

\sec \theta=\dfrac{m+n}{2\sqrt{mn}}

We know that,

The trigonometric identity,

\sec \theta=\dfrac{h}{b}

∴ Base (b) = 2\sqrt{mn and hypotaneous (h) = m + n

By Pythagoras theorem,

Perpendicular, p=\sqrt{h^{2}-b^{2}}

p=\sqrt{(m + n)^{2}-(2\sqrt{mn})^{2}}

= \sqrt{(m + n)^{2}-4mn}

= \sqrt{(m - n)^{2}}

= m - n

Using the algebraic identity,

(a-b)^{2}=(a+b)^{2}-4ab

Perpendicular, p = m - n

\sin \theta=\dfrac{p}{h}

=\dfrac{m-n}{m+n}}

Thus, \sin \theta =\dfrac{m-n}{m+n}}

Similar questions