if sec theta plus tan theta =4 then find the values of cos theta tan theta
Attachments:
Answers
Answered by
6
i think this is right
Attachments:
Answered by
7
Given sec theta + tan theta = 4.
On squaring both sides, we get
(sec theta + tan theta)^2 = (4)^2
We know that (a+b)^2 = a^2+b^2 + 2ab.
sec^2 theta + tan^2 theta + 2 sectheta tantheta = 16
We know that sec^2theta = tan^2theta + 1. = > tan^2 theta = sec^2 theta - 1.
sec^2 theta + sec^2 theta - 1 + 2 sectheta tantheta = 16.
2 sec^2 theta - 1 + 2 sectheta tantheta = 16
2 sec^2 theta + 2 sectheta tantheta = 16 + 1
2 sec^2 theta + 2 sectheta tantheta = 17
2 sec theta(sec theta + tan theta) = 17.
2 sec theta(4) = 17
sec theta = 17/8.
Then tan^2 theta = sec^2 theta - 1
= (17/8)^2 - 1
= 289/64 - 1
= 225/64
tan theta = (15/8)
Now,
Sin theta = tan theta/sec theta
= 15/8/17/8
= 15/17.
We know that sin^2 theta + cos ^2 theta = 1
Cos^2 theta = 1 - sin^2 theta
= 1 - (15/17)^2
= 1 - 225/289
= 64/289
cos theta = 8/17.
Hope this helps!
On squaring both sides, we get
(sec theta + tan theta)^2 = (4)^2
We know that (a+b)^2 = a^2+b^2 + 2ab.
sec^2 theta + tan^2 theta + 2 sectheta tantheta = 16
We know that sec^2theta = tan^2theta + 1. = > tan^2 theta = sec^2 theta - 1.
sec^2 theta + sec^2 theta - 1 + 2 sectheta tantheta = 16.
2 sec^2 theta - 1 + 2 sectheta tantheta = 16
2 sec^2 theta + 2 sectheta tantheta = 16 + 1
2 sec^2 theta + 2 sectheta tantheta = 17
2 sec theta(sec theta + tan theta) = 17.
2 sec theta(4) = 17
sec theta = 17/8.
Then tan^2 theta = sec^2 theta - 1
= (17/8)^2 - 1
= 289/64 - 1
= 225/64
tan theta = (15/8)
Now,
Sin theta = tan theta/sec theta
= 15/8/17/8
= 15/17.
We know that sin^2 theta + cos ^2 theta = 1
Cos^2 theta = 1 - sin^2 theta
= 1 - (15/17)^2
= 1 - 225/289
= 64/289
cos theta = 8/17.
Hope this helps!
Róunak:
wow
Similar questions