if sec theta + tab theta = p, then find the value of tan theta.
Answers
Answer:
ecθ+tanθ=p ----------------------(1)
∵, sec²θ-tan²θ=1
or, (secθ+tanθ)(secθ-tanθ)=1
or, secθ-tanθ=1/p ----------------(2)
Adding (1) and (2) we get,
2secθ=p+1/p
or, secθ=(p²+1)/2p
∴, cosθ=1/secθ=2p/(p²+1)
∴, sinθ=√(1-cos²θ)
=√[1-{2p/(p²+1)}²]
=√[1-4p²/(p²+1)²]
=√[{(p²+1)²-4p²}/(p²+1)²]
=√[(p⁴+2p²+1-4p²)/(p²+1)²]
=√(p⁴-2p²+1)/(p²+1)
=√(p²-1)²/(p²+1)
=(p²-1)/(p²+1)
∴, cosecθ=1/sinθ=1/[(p²-1)/(p²+1)]=(p²+1)/(p²-1) Ans.
Answer:
ecθ+tanθ=p ----------------------(1)∵,
sec²θ-tan²θ=1or,
(secθ+tanθ)(secθ-tanθ)=1or,
secθ-tanθ=1/p ----------------
(2)Adding (1) and (2) we get,2secθ=p+1/por,
secθ=(p²+1)/2p∴,
cosθ=1/secθ=2p/(p²+1)∴,
sinθ=√(1-cos²θ)=
√[1-{2p/(p²+1)}²]=
√[1-4p²/(p²+1)²]=
√[{(p²+1)²-4p²}/(p²+1)²]=
√[(p⁴+2p²+1-4p²)/(p²+1)²]=
√(p⁴-2p²+1)/(p²+1)=√(p²-1)²/(p²+1)=
(p²-1)/(p²+1)∴,
cosecθ=1/sinθ=1/[(p²-1)/(p²+1)]=(p²+1)/(p²-1)