Math, asked by shsmadhuri7, 6 months ago

if sec theta -tan theta =1/k^3 then what is the value of sec theta +tan theta​

Answers

Answered by Anonymous
12

Answer:

★ (sec∅ + tan∅) = k³ ★

Step-by-step explanation:

Given:

  • \sf{sec\theta-tan\theta=\dfrac{1}{k^3}}

To find:

  • Value of sec∅ + tan∅.

Solution:

We know that,

{\boxed{\large{\sf{sec^2\theta-tan^2\theta=1}}}}

\implies sec²∅ - tan²∅ = 1

\implies (sec∅ + tan∅)(sec∅ - tan∅) = 1

\implies (sec∅ + tan∅) × (1/k³) = 1

\implies (sec∅ + tan∅) = 1×k³

\implies (sec∅ + tan∅) = k³

________________

Some formulas :-

★ sin²A + cos²A = 1

★ 1 + tan²A = sec²A

★1 + cot²A= cosec²A

★ cos²A - sin²A = cos2A

★ sin(A+B) = sinAcosB + cosAsinB

★ sin(A-B) = sinAcosB - cosAsinB

★ cos(A+B) = cosAsinB- sinAsinB

★ cos(A-B) = cosAsinB + sinAsinB

\sf{tan(A+B)=\dfrac{tanA+tanB}{1-tanAtanB}}

\sf{tan(A-B)=\dfrac{tanA-tanB}{1+tanAtanB}}

★ sin2∅ = 2sin∅cos∅

★ cos2∅ = 2cos²∅ - 1

★ cos2∅ = 1 - 2sin²∅

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{sec \:  \theta \:  - tan \:  \theta  = \:\dfrac{1}{ {k}^{3} }  }  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{sec \:  \theta \:  + tan \:  \theta \: }  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

☆ We know, that

\tt \:   \longrightarrow \:  {sec}^{2}  \:  \theta \:  -  {tan}^{2}  \:  \theta \: =  1

\tt \:   \longrightarrow \:  (sec \:  \theta \:  + tan \:  \theta \: )(sec \:  \theta \:  - tan \:  \theta \: ) = 1

\tt \:   \longrightarrow \: (sec \:  \theta \:  + tan \:  \theta \: ) \times \dfrac{1}{ {k}^{ 3} }  = 1

\tt\implies \:sec \:  \theta \:  + tan \:  \theta \:  =  {k}^{3}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\bf \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  Explore  \: more } ✍

─━─━─━─━─━─━─━─━─━─━─━─━

Additional Information:-

Additional Information:- Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions
Math, 6 months ago