if sec theta -tan theta =1/k^3 then what is the value of sec theta +tan theta
Answers
Answer:
★ (sec∅ + tan∅) = k³ ★
Step-by-step explanation:
Given:
To find:
- Value of sec∅ + tan∅.
Solution:
We know that,
sec²∅ - tan²∅ = 1
(sec∅ + tan∅)(sec∅ - tan∅) = 1
(sec∅ + tan∅) × (1/k³) = 1
(sec∅ + tan∅) = 1×k³
(sec∅ + tan∅) = k³
________________
Some formulas :-
★ sin²A + cos²A = 1
★ 1 + tan²A = sec²A
★1 + cot²A= cosec²A
★ cos²A - sin²A = cos2A
★ sin(A+B) = sinAcosB + cosAsinB
★ sin(A-B) = sinAcosB - cosAsinB
★ cos(A+B) = cosAsinB- sinAsinB
★ cos(A-B) = cosAsinB + sinAsinB
★
★
★ sin2∅ = 2sin∅cos∅
★ cos2∅ = 2cos²∅ - 1
★ cos2∅ = 1 - 2sin²∅
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ We know, that
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━
Additional Information:-
Additional Information:- Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1