Math, asked by abhisheksheel5715, 1 year ago

If sec theta + tan theta = 2/3, find the value of sin theta and determine the quadrant in which theta lies.

Answers

Answered by rakshanzutshi
67

Step-by-step explanation:

IN THE PICTURE...

HOPE IT HELPS..

PLZ MARK BRAINLIEST

Attachments:
Answered by rowboatontario
48

The value of  \text{sin} \theta =\frac{-5}{13} and theta lies in the 3rd and 4th quadrant.

Step-by-step explanation:

We are given that sec theta + tan theta = 2/3 and we have to determine the value of sin theta.

The given equation is;

\text{sec} \theta + \text{tan} \theta = \frac{2}{3}

As we know that  \text{sec} \theta = \frac{1}{\text{cos} \theta}  and  \text{tan} \theta = \frac{\text{sin} \theta}{\text{cos} \theta} , so;

\frac{1}{\text{cos} \theta}  + \frac{\text{sin} \theta}{\text{cos} \theta}  = \frac{2}{3}

\frac{1+\text{sin} \theta}{\text{cos} \theta}   = \frac{2}{3}

Now, squaring both sides we get;

(\frac{1+\text{sin} \theta}{\text{cos} \theta} )^{2}   = (\frac{2}{3})^{2}

\frac{(1+\text{sin} \theta)^{2} }{\text{cos}^{2}  \theta}  = \frac{4}{9}

\frac{(1+\text{sin} \theta)\times (1+\text{sin} \theta) }{1-\text{sin}^{2}  \theta}  = \frac{4}{9}           {\because \text{sin}^{2}  \theta+ \text{cos}^{2}  \theta= 1}

\frac{(1+\text{sin} \theta)\times (1+\text{sin} \theta) }{(1-\text{sin}  \theta)(1+\text{sin}  \theta})  = \frac{4}{9}          {a^{2}-b^{2}  = (a-b)(a+b)}

\frac{1+\text{sin} \theta }{1-\text{sin}  \theta} = \frac{4}{9}

Now, cross multiplying the fractions we get;

9 \times (1+\text{sin} \theta)  = 4 \times (1-\text{sin}  \theta)

9+9\text{sin} \theta  = 4-4\text{sin}  \theta

9\text{sin} \theta+4\text{sin}  \theta  = 4-9

13\text{sin}  \theta  = -5

\text{sin}  \theta  =\frac{-5}{13}

Since the value of \text{sin}  \theta is negative, this means that theta will lie in 3rd and 4th quadrant because in these two-quadrants sin values are negative.

Similar questions