Math, asked by aliya4231, 1 year ago

if sec theta + tan theta=√3, then find positive value of sin theta


aliya4231: please solve krdo

Answers

Answered by sprao534
14
Sec square (theta) - tan square(theta) =1
[Sec(theta)-tan(theta)] [sec(theta) +tan(theta)] =1
V3 [sec (theta) - tan(theta)] =1
Sec(theta) - tan (theta) =1/v3
2 tan(theta) =v3-1/v3=2/v3
Tan(theta) =1/v3
Sin (theta) =1/2
Answered by payalchatterje
1

Answer:

               Value of  sin\theta = \frac{1}{2}

Step-by-step explanation:

Given,      (Sec\theta + tan\theta) = \sqrt{3}   ........................................................(i)

We know that,

                     Sec^{2}\theta - tan^2\theta = 1

                →  (Sec\theta + tan\theta)(Sec\theta - tan\theta) = 1

                →  √3  (Sec\theta - tan\theta) = 1

                →  (Sec\theta - tan\theta) = \frac{1}{\sqrt3}   ..................................................(ii)

Now,we can writethat,

                     2 tan\theta = (Sec\theta + tan\theta)-(Sec\theta - tan\theta)

                               = \sqrt3 - \frac{1}{\sqrt3}                  [Using equation(ii)]

                              = \frac{2}{\sqrt3}

                   ∴   tan\theta = \frac{1}{\sqrt3}      

                  →      \frac{sin\theta}{cos\theta}  = \frac{1}{\sqrt3}

                  →  sin\theta = (\frac{1}{\sqrt{3} } )cos\theta          [cos\theta =  \frac{base}{hypotenuse} = \frac{\sqrt{3} }{2}  ]

                    sin\theta = (\frac{1}{\sqrt{3} } )* (\frac{\sqrt3}{2} )  =\frac{1}{2}  [Ans]

Similar questions