If sec theta + tan theta = 4 , find sin theta and cos theta
Answers
Answered by
358
SecØ +TanØ=4
SecØ= 4-TanØ
squaring both sides
Sec²Ø= 16 + Tan²Ø- 8 TanØ
1+Tan²Ø=16 + Tan²Ø- 8 TanØ
we get 8Tan Ø= 15
TanØ=15/8
Tan²Ø= 225/64
Sec²Ø= 1+Tan²Ø
Sec²Ø= 289/64
SecØ =17/8
So CosØ=8/17
Sin²Ø=1-Cos²Ø = 1-64/289
Sin²Ø= 225/289
SinØ= 15/17
Cos Ø= 8/17 and Sin Ø= 15/17
Hope this helps u
Mark it as Brainliest
SecØ= 4-TanØ
squaring both sides
Sec²Ø= 16 + Tan²Ø- 8 TanØ
1+Tan²Ø=16 + Tan²Ø- 8 TanØ
we get 8Tan Ø= 15
TanØ=15/8
Tan²Ø= 225/64
Sec²Ø= 1+Tan²Ø
Sec²Ø= 289/64
SecØ =17/8
So CosØ=8/17
Sin²Ø=1-Cos²Ø = 1-64/289
Sin²Ø= 225/289
SinØ= 15/17
Cos Ø= 8/17 and Sin Ø= 15/17
Hope this helps u
Mark it as Brainliest
abhi178:
correct it find numerical not term of identites
Answered by
45
secθ - tanθ = 4 -----> (1)
Multiplying and dividing by secθ +tanθ
= secθ - tanθ × secθ +tanθ/secθ +tanθ
= sec²θ - tan²θ/secθ + tanθ = 4
we know that --> sec²θ - tan²θ = 1
1/secθ + tanθ = 4
therefore ,
secθ + tanθ = 1/4 ----> (2)
------------------------------------------------------------------------
Adding equations (1) and (2) :-
secθ - tanθ = 4
secθ + tanθ = 1/4
---------------------------
2secθ = 4 + 1/4
2secθ = 17/4
secθ = 17/4*2
= 17/8
we know that
cosθ = 1/secθ
= 1/(17/8)
= 8/17
Similar questions