Math, asked by madhavimanchikatla19, 4 months ago

If sec theta+tan theta=5 find the quadrant in which theta lies,find the value of sin theta​

Answers

Answered by itzzbiswaaa
13

Answer:

Given  

We have sec theta + tan theta = 5

                1/cos theta + sin theta /cos theta = 5

              1 + sin theta / cos theta = 5

       Squaring both sides we get

       (1 + sin theta)^2/ cos^2 theta = 25

     (1 + sin theta)(1 + sin theta) / (1 – sin^2 theta) = 25

      (1 + sin theta)(1 + sin theta) /(1 + sin theta)(1 – sin theta) = 2

      1 + sin theta / 1 – sin theta = 25

   1 + sin theta = 25(1 – sin theta)

  1 + sin theta = 25 – 25 sin theta

  26 sin theta = 24

    Sin theta = 24/26

   Sin theta = 12/13

  So sin theta lies in I quadrant


madhavimanchikatla19: please do it clearly from the step 1+sin theta = 25(1-sin theta
Answered by MrMonarque
23

Refer The Attachment ⬆️

Hope It Helps You ✌️

Attachments:
Similar questions