Math, asked by harshachal, 10 months ago

If sec theta -tan theta = a +1/a - 1
then cos theta is equal to​

Answers

Answered by MaheswariS
8

\textbf{Given:}

\sec\theta-\tan\theta=\displaystyle\frac{a+1}{a-1}........(1)

\text{We know that}

\boxed{\bf\,sec^2\theta-\tan^2\theta=1}

\text{Using}

\boxed{a^2-b^2=(a-b)(a+b)}

\implies(\sec\theta-\tan\theta)(\sec\theta+\tan\theta)=1

\implies\displaystyle\frac{a+1}{a-1}(\sec\theta+\tan\theta)=1

\implies\sec\theta+\tan\theta=\displaystyle\frac{a-1}{a+1}........(2)

\text{Adding (1) and (2), we get}

2\sec\theta=\displaystyle\frac{a+1}{a-1}+\frac{a-1}{a+1}

2\sec\theta=\displaystyle\frac{(a+1)^2+(a-1)^2}{(a-1)(a+1)}

2\sec\theta=\displaystyle\frac{a^2+1+2a+a^2+1-2a}{a^2-1}

2\sec\theta=\displaystyle\frac{2a^2+2}{a^2-1}

2\sec\theta=\displaystyle\frac{2(a^2+1)}{a^2-1}

\text{Cancelling 2 on both sides,}

\sec\theta=\displaystyle\frac{a^2+1}{a^2-1}

\text{Taking reciprocals on both sides, we get}

\implies\boxed{\bf\:\cos\theta=\frac{a^2-1}{a^2+1}}

Similar questions