Math, asked by vaishnav19naik, 1 year ago

if sec theta + tan theta is equal to p then find the value of tan theta ​

Answers

Answered by sivaprasath
2

Answer:

tan \ \theta = \frac{p^2-1}{2p}

Step-by-step explanation:

Given :

sec \ \theta + tan \ \theta = p ....(1)

To find :

The value of tan \ \theta

we know that,

sec^2 \ \theta - tan^2 \ \theta = 1

(sec \ \theta - tan \ \theta)(sec \ \theta + tan \ \theta) = 1    As, ∵ a² - b² = (a + b)(a - b)

(sec \ \theta - tan \ \theta)(p) = 1

sec \ \theta - tan \ \theta = \frac{1}{p}  ....(2)

By  subtracting (2) from (1),

We get,

(sec \ \theta + tan \ \theta) - (sec \ \theta - tan \ \theta) = p - \frac{1}{p}

sec \ \theta + tan \ \theta - sec \ \theta + tan \ \theta = \frac{p^2-1}{p}

2 \ tan \ \theta = \frac{p^2-1}{p}

tan \ \theta = \frac{p^2-1}{2p}

Similar questions