Math, asked by gillgurnoor0045, 1 year ago

if sec theta + tan theta = m and sec theta - tan theta = n then find the value of mn​

Answers

Answered by IamIronMan0
3

Answer:

mn \\  = ( \sec(x)  +  \tan(x) )( \sec(x)  -  \tan(x) ) \\  =  \sec {}^{2} (x)  -  \tan {}^{2} (x)  \\  = 1

Answered by ExploringMathematics
0

\rm{m\times n\:is\:equal\:to\:(sec\:\theta+tan\:\theta)(sec\:\theta-tan\:\theta)}

\longrightarrow\rm{mn =(sec\:\theta+tan\:\theta)(sec\:\theta-tan\:\theta) }

\longrightarrow\rm{mn =sec^2\:\theta-tan^2\:\theta\quad...\:Since\:(a+b)(a-b)=a^2-b^2}

\longrightarrow\rm{mn =1/\cos ^{2} \theta-\sin ^{2} \theta/\cos ^{2} \theta\quad...\:Since\:sec\:\theta=1/\cos\theta\:\&\: tan\:\theta=\sin\:\theta/\cos\:\theta}

\longrightarrow\rm{mn =(1-\sin ^{2} \theta)/\cos ^{2} \theta=\cos ^{2} \theta/\cos ^{2} \theta}

\longrightarrow\rm{mn =1\quad...\:Hence\:Proved!}

Similar questions