If sec theta+tan theta=m, then sec^4 theta-tan^4 theta-2sec theta×tan theta=?
Answers
Step-by-step explanation:
We have,
To find,
∴
[ ∵ ]
[ ∵ ]
......(1)
[ ∵ ]
Given by question,
Rationalising numerator and denominator, we get
⇒
⇒
⇒
Put in (1), we get
∴
Answer:
sec
4
θ−tan
4
θ−2secθ×tanθ=
m
2
1
Step-by-step explanation:
We have,
\sec \theta+\tan \theta=msecθ+tanθ=m
To find, \sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=?sec
4
θ−tan
4
θ−2secθ×tanθ=?
∴ \sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \thetasec
4
θ−tan
4
θ−2secθ×tanθ
=(\sec^2 \theta)^2-(\tan^2 \theta)^2-2\sec \theta\times\tan \theta=(sec
2
θ)
2
−(tan
2
θ)
2
−2secθ×tanθ
=(\sec^2 \theta +\tan^2 \theta)(\sec^2 \theta -\tan^2 \theta)-2\sec \theta\times\tan \theta=(sec
2
θ+tan
2
θ)(sec
2
θ−tan
2
θ)−2secθ×tanθ
[ ∵ a^{2} -b^{2} =(a+b)(a-b)a
2
−b
2
=(a+b)(a−b)
=(\sec^2 \theta +\tan^2 \theta)(1)-2\sec \theta\times\tan \theta=(sec
2
θ+tan
2
θ)(1)−2secθ×tanθ
[ ∵ \sec^2 \theta -\tan^2 \theta=1sec
2
θ−tan
2
θ=1
=\sec^2 \theta +\tan^2 \theta-2\sec \theta\times\tan \theta=sec
2
θ+tan
2
θ−2secθ×tanθ
=(\sec \theta-\tan \theta)^2=(secθ−tanθ)
2
......(1)
[ ∵ (a-b)^{2} =a^{2} +b^{2} -2ab(a−b)
2
=a
2
+b
2
−2ab
Given by question,
\sec \theta+\tan \theta=msecθ+tanθ=m
Rationalising numerator and denominator, we get
\dfrac{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{\sec \theta-\tan \theta} =m
secθ−tanθ
(secθ+tanθ)(secθ−tanθ)
=m
⇒ \dfrac{\sec^2 \theta-\tan^2 \theta}{\sec \theta-\tan \theta} =m
secθ−tanθ
sec
2
θ−tan
2
θ
=m
⇒ \dfrac{1}{\sec \theta-\tan \theta} =m
secθ−tanθ
1
=m
⇒ \sec \theta-\tan \theta}=\dfrac{1}{m}
Put \sec \theta-\tan \theta}=\dfrac{1}{m} in (1), we get
\sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=(\dfrac{1}{m})^2=\dfrac{1}{m^2}sec
4
θ−tan
4
θ−2secθ×tanθ=(
m
1
)
2
=
m
2
1
∴ \sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=\dfrac{1}{m^2}sec
4
θ−tan
4
θ−2secθ×tanθ=
m
2
1