Math, asked by jainsahil59141, 10 months ago

If sec theta+tan theta=m, then sec^4 theta-tan^4 theta-2sec theta×tan theta=?

Answers

Answered by harendrachoubay
101

\sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=\dfrac{1}{m^2}

Step-by-step explanation:

We have,

\sec \theta+\tan \theta=m

To find, \sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=?

\sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta

=(\sec^2 \theta)^2-(\tan^2 \theta)^2-2\sec \theta\times\tan \theta

=(\sec^2 \theta +\tan^2 \theta)(\sec^2 \theta -\tan^2 \theta)-2\sec \theta\times\tan \theta

[ ∵ a^{2} -b^{2} =(a+b)(a-b)]

=(\sec^2 \theta +\tan^2 \theta)(1)-2\sec \theta\times\tan \theta

[ ∵ \sec^2 \theta -\tan^2 \theta=1]

=\sec^2 \theta +\tan^2 \theta-2\sec \theta\times\tan \theta

=(\sec \theta-\tan \theta)^2     ......(1)

[ ∵ (a-b)^{2} =a^{2} +b^{2} -2ab]

Given by question,

\sec \theta+\tan \theta=m

Rationalising numerator and denominator, we get

\dfrac{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{\sec \theta-\tan \theta} =m

\dfrac{\sec^2 \theta-\tan^2 \theta}{\sec \theta-\tan \theta} =m

\dfrac{1}{\sec \theta-\tan \theta} =m

\sec \theta-\tan \theta}=\dfrac{1}{m}

Put \sec \theta-\tan \theta}=\dfrac{1}{m} in (1), we get

\sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=(\dfrac{1}{m})^2=\dfrac{1}{m^2}

\sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=\dfrac{1}{m^2}

Answered by lambavinayji4
10

Answer:

sec

4

θ−tan

4

θ−2secθ×tanθ=

m

2

1

Step-by-step explanation:

We have,

\sec \theta+\tan \theta=msecθ+tanθ=m

To find, \sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=?sec

4

θ−tan

4

θ−2secθ×tanθ=?

∴ \sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \thetasec

4

θ−tan

4

θ−2secθ×tanθ

=(\sec^2 \theta)^2-(\tan^2 \theta)^2-2\sec \theta\times\tan \theta=(sec

2

θ)

2

−(tan

2

θ)

2

−2secθ×tanθ

=(\sec^2 \theta +\tan^2 \theta)(\sec^2 \theta -\tan^2 \theta)-2\sec \theta\times\tan \theta=(sec

2

θ+tan

2

θ)(sec

2

θ−tan

2

θ)−2secθ×tanθ

[ ∵ a^{2} -b^{2} =(a+b)(a-b)a

2

−b

2

=(a+b)(a−b)

=(\sec^2 \theta +\tan^2 \theta)(1)-2\sec \theta\times\tan \theta=(sec

2

θ+tan

2

θ)(1)−2secθ×tanθ

[ ∵ \sec^2 \theta -\tan^2 \theta=1sec

2

θ−tan

2

θ=1

=\sec^2 \theta +\tan^2 \theta-2\sec \theta\times\tan \theta=sec

2

θ+tan

2

θ−2secθ×tanθ

=(\sec \theta-\tan \theta)^2=(secθ−tanθ)

2

......(1)

[ ∵ (a-b)^{2} =a^{2} +b^{2} -2ab(a−b)

2

=a

2

+b

2

−2ab

Given by question,

\sec \theta+\tan \theta=msecθ+tanθ=m

Rationalising numerator and denominator, we get

\dfrac{(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)}{\sec \theta-\tan \theta} =m

secθ−tanθ

(secθ+tanθ)(secθ−tanθ)

=m

⇒ \dfrac{\sec^2 \theta-\tan^2 \theta}{\sec \theta-\tan \theta} =m

secθ−tanθ

sec

2

θ−tan

2

θ

=m

⇒ \dfrac{1}{\sec \theta-\tan \theta} =m

secθ−tanθ

1

=m

⇒ \sec \theta-\tan \theta}=\dfrac{1}{m}

Put \sec \theta-\tan \theta}=\dfrac{1}{m} in (1), we get

\sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=(\dfrac{1}{m})^2=\dfrac{1}{m^2}sec

4

θ−tan

4

θ−2secθ×tanθ=(

m

1

)

2

=

m

2

1

∴ \sec^4 \theta-\tan^4 \theta-2\sec \theta\times\tan \theta=\dfrac{1}{m^2}sec

4

θ−tan

4

θ−2secθ×tanθ=

m

2

1

Similar questions