CBSE BOARD X, asked by Sakshi3007, 11 hours ago

If sec theta + tan theta= m, then the value of sec^4 theta -tan^4 theta -2sec theta tan theta is:
a. m
b. m
c. 1/m
d. None of these​

Answers

Answered by vikkiain
1

option : (d)

Explanation:

Given, \:  \: sec \theta + tan  \theta = m \\ we \:  \: know \:  \: that \:   \:  \: \boxed{sec^{2}  \theta  -  tan^{2} \theta = 1 } \\ or,  \:  \:  \: (sec \theta + tan  \theta )(sec \theta  -  tan  \theta ) = 1 \\or, \:  \:  \:  m(sec \theta  -  tan  \theta ) = 1 \\ or, \:  \:  \: sec \theta  -  tan  \theta =  \frac{1}{m}  \\ Now, \:  \:  \:  \: sec^4  \theta -tan^4  \theta -2sec  \theta tan  \theta \\  = \:  (sec^{2}  \theta  +  tan^{2} \theta )(sec^{2}  \theta  - tan^{2} \theta ) -2sec  \theta tan  \theta \\  =  \:  (sec^{2}  \theta   +   tan^{2} \theta ) \times 1 -2sec  \theta tan  \theta \\  =  \: sec^{2}  \theta   +   tan^{2} \theta  -2sec  \theta tan  \theta \\  = (sec  \theta  -  tan  \theta)^{2}  \\ putting \:  \: value \\  = ( \frac{1}{m} )^{2}  =  \frac{1}{ {m}^{2} }

Similar questions