Math, asked by RosesankaDa, 1 year ago

If sec theta + tan theta = p, prove that sin theta = p 2 -1 / p 2 + 1

Answers

Answered by kvnmurty
487
p = tanФ + secФ
p - secФ = tanФ
p² + sec²Ф  - 2 p secФ = tan²Ф = sec²Ф - 1
So secФ = (p² + 1) / 2p

so cos
Ф = 2p/(1+p²)
sinФ = √[1 - cos²Ф ] = (p²-1)/(1+p²)
Answered by mindfulmaisel
19

To prove:

\bold{\sin \theta=\frac{p^{2}-1}{p^{2}+1}}

Given:

\sec \theta+\tan \theta=p

Solution:

p=\sec \theta+\tan \theta

Hence, we can say that  

p-\sec \theta=\tan \theta

Squaring both sides, we get

p^{2}+\sec ^{2} \theta-2 p \sec \theta=\tan ^{2} \theta

p^{2}+\sec ^{2} \theta-2 p \sec \theta=\sec ^{2} \theta-1

p^{2}+1-2 p \sec \theta=0

p^{2}+1=2 p \sec \theta

So, \sec \theta=\frac{p^{2}+1}{2 p}

\cos \theta=\frac{2 p}{1+p^{2}}

\sin \theta=\sqrt{1-\cos ^{2} \theta}=\frac{p^{2}-1}{p^{2}+1}

Hence, proved that \bold{\sin \theta=\frac{p^{2}-1}{p^{2}+1}} given that \bold{\sec \theta+\tan \theta=p}.

The ‘trigonometric functions’ also called ‘circular functions’, ‘angle functions’ or ‘goniometricfunctions’ are “real functions” which relate an ‘angle’ of a ‘right-angled triangle’ to ratios of two side lengths.

Similar questions