If sec theta+tan theta = P. PT sin theta=P^2-1/P^2+1
Answers
Answered by
6
p²-1/p²+1=[(sec θ+tan θ)²-1]/[(sec θ+tan θ)²+1]
=(sec²θ+tan²θ+2×sec θ×tan θ-1)/(sec²θ+tan²θ+2×sec θ×tan θ+1)
=(tan²θ+tan²θ+2×sec θ×tan θ)/(sec²θ+sec²θ+2×sec θ×tan θ)
[∵sec²θ-1=tan²θ & tan²θ+1=sec²θ]
=(2×tan²θ+2×sec θ×tan θ)/(2×sec²θ+2×sec θ×tan θ)
=[2 tan θ(tan θ+sec θ)]/[2 sec θ(tan θ+sec θ)]
=tan θ/sec θ
=(sin θ/cos θ)×cos θ [∵1/sec θ=cos θ]
=sin θ
=(sec²θ+tan²θ+2×sec θ×tan θ-1)/(sec²θ+tan²θ+2×sec θ×tan θ+1)
=(tan²θ+tan²θ+2×sec θ×tan θ)/(sec²θ+sec²θ+2×sec θ×tan θ)
[∵sec²θ-1=tan²θ & tan²θ+1=sec²θ]
=(2×tan²θ+2×sec θ×tan θ)/(2×sec²θ+2×sec θ×tan θ)
=[2 tan θ(tan θ+sec θ)]/[2 sec θ(tan θ+sec θ)]
=tan θ/sec θ
=(sin θ/cos θ)×cos θ [∵1/sec θ=cos θ]
=sin θ
Similar questions