If sec theta + tan theta = p, show that sec theta - tan theta =1/p .hence,find the value of cos theta and sin theta
Answers
Answered by
32
check the uploaded image
Attachments:
Answered by
9
Secθ - Tanθ = 1/p if Secθ + Tanθ = p
Step-by-step explanation:
Secθ + Tanθ = p
=> 1/Cosθ + Sinθ/Cosθ = p
=> (1 + Sinθ)/Cosθ = p
=> Cosθ/(1 + Sinθ) = 1/p
=> Cosθ(1 - Sinθ) /(1 + Sinθ)(1 - Sinθ) = 1/p
=> Cosθ(1 - Sinθ)/(1 - Sin²θ) = 1/p
=> Cosθ(1 - Sinθ)/Cos²θ= 1/p
=> (1 - Sinθ)/Cosθ= 1/p
=> 1/Cosθ - Sinθ/Cosθ = 1/p
=> Secθ - Tanθ = 1/p
(1 + Sinθ)/Cosθ = p
=> (1 + Sinθ) = pcosθ
Squaring both sides
=> 1 + Sin²θ + 2Sinθ = p²cos²θ
=> 1 + Sin²θ + 2Sinθ = p² - p²sin²θ
=>( p²+ 1)sin²θ + 2Sinθ + (1 - p²) = 0
Sinθ = (- 2 ± √4 - 4(( p²+ 1)(1 - p²) ) / (2 ( p²+ 1))
= (-2 ± √4 -4 + 4p⁴)/ (2 ( p²+ 1))
= (-2 ± 2p²)/ 2(p²+ 1)
= -(1 ± p²)/(p²+ 1)
Learn more:
sin x + cos x -1
https://brainly.in/question/12563868
1/secx-tanx -1/cos = 1/cosx - 1/secx+tanx
https://brainly.in/question/8160834
Similar questions