if sec theta + tan theta = P than find the value of cosec theta
Answers
Answered by
1
Answer:mark as brainlist
Step-by-step explanation:
secθ+tanθ=p ----------------------(1)
∵, sec²θ-tan²θ=1
or, (secθ+tanθ)(secθ-tanθ)=1
or, secθ-tanθ=1/p ----------------(2)
Adding (1) and (2) we get,
2secθ=p+1/p
or, secθ=(p²+1)/2p
∴, cosθ=1/secθ=2p/(p²+1)
∴, sinθ=√(1-cos²θ)
=√[1-{2p/(p²+1)}²]
=√[1-4p²/(p²+1)²]
=√[{(p²+1)²-4p²}/(p²+1)²]
=√[(p⁴+2p²+1-4p²)/(p²+1)²]
=√(p⁴-2p²+1)/(p²+1)
=√(p²-1)²/(p²+1)
=(p²-1)/(p²+1)
∴, cosecθ=1/sinθ=1/[(p²-1)/(p²+1)]=(p²+1)/(p²-1) Ans.
imyourayushozv66p:
Bro
Mark karo
Answered by
0
X = theta
sec X = 1/cosx
tanX = sinx/cosx
1/cosx + sinx/cosx = P
=>1 + sinx / cosx = p
=>(1+sinx)²/cos²X = p²
=>(1+sinx)²/1-sin²X = p²
=>(1+sinx)²/(1+sinx)(1-sinx) = p²
=>(1+sinx)/1-sinx= p²
=>cosecx+1/cosecx-1 =p²
Hope it was useful mark as brainliest
sec X = 1/cosx
tanX = sinx/cosx
1/cosx + sinx/cosx = P
=>1 + sinx / cosx = p
=>(1+sinx)²/cos²X = p²
=>(1+sinx)²/1-sin²X = p²
=>(1+sinx)²/(1+sinx)(1-sinx) = p²
=>(1+sinx)/1-sinx= p²
=>cosecx+1/cosecx-1 =p²
Hope it was useful mark as brainliest
Similar questions