Math, asked by Twisha2005, 3 months ago

if sec theta+tan theta = p,than prove that sin theta= p²-1/p²+1​​​

Answers

Answered by Aryan0123
5

Solution:

sec θ + tan θ = p

\\

Squaring on both sides,

(sec θ + tan θ)² = p²

sec²θ + tan²θ + 2sec θ tan θ = p²

\\

Substitute the value of p² in the given expansion

\sf{ \dfrac{ {p}^{2}  - 1}{ {p}^{2} + 1 } } \\  \\

 =  \sf{\dfrac{sec^{2} \theta + tan^{2} \theta + 2sec \theta \: tan \theta  - 1}{sec^{2} \theta + tan^{2} \theta + 2sec \theta \: tan \theta   +  1}} \\  \\

Substitute

  • tan²θ + 1 as sec²θ and
  • sec²θ - 1 as tan²θ

\\

 \implies  \sf{\dfrac{tan^{2} \theta +  tan^{2} \theta + 2sec \theta \: tan \theta}{ {sec}^{2} \theta + sec^{2} \theta + 2sec \theta \: tan \theta }} \\  \\

 \implies  \sf{\dfrac{2 {tan}^{2}  \theta + 2sec \theta tan \theta}{2 {sec}^{2}  \theta + 2sec \theta tan \theta}} \\  \\

 \implies \sf{ \dfrac{ \not{2} \: tan \theta \:  \cancel{(tan \theta + sec \theta)}}{ \not{2} \: sec \theta   \: \cancel{(sec \theta + tan \theta)}} } \\  \\

 \implies \sf{ \dfrac{tan \theta}{sec \theta} } \\  \\

 \implies \sf{ \dfrac{ \sin \theta }{ \cos \theta} \times  \cos \theta } \\  \\

 =  \boxed{ \bf{sin \theta}} \\  \\

HENCE PROVED

Similar questions