Math, asked by Anonymous, 3 months ago

If sec theta + tan theta = p
then find the value of cosec theta​

enjoy​

Answers

Answered by snehaprajnaindia204
6

Answer:

Given :

sec Ф + tan Ф = р

Solution :

sec \:  \alpha  + tan \:  \alpha  = p \\ \\   {sec}^{2}  \alpha  -  {tan}^{2}  \alpha  = 1 \\  =  > (sec \:  \alpha  - tan  \: \alpha ) \times p = 1 \\  =  > sec \:  \alpha  - tan \:  \alpha  =  \frac{1}{p}

__ __

Adding the above 2 equations,

2sec \:  \alpha  = p  +  \frac{1}{p} \\  =  > sec \:  \alpha  =  \frac{ {p}^{2} + 1 }{2p}

__ __

cos \:  \alpha  =  \frac{1}{sec \:  \alpha }  \\  =  > cos \:  \alpha  =  \frac{2p}{ {p}^{2}  + 1 }

__ __

 {sin}^{2}  \:  \alpha  = 1 -  {cos}^{2}  \alpha  \\  =  >  {sin}^{2} \:  \alpha  = 1 -  \frac{2p}{ {p}^{2} + 1 }  \\  =  > sin \:  \alpha  =  \sqrt{ \frac{ {(p - 1)}^{2} }{ {p}^{2}  + 1} }  \\  =  > sin \:  \alpha  =  \frac{p - 1}{ \sqrt{ {p}^{2} + 1 } }

__ __

cosec \:  \alpha  =  \frac{1}{sin \:  \alpha }  \\  \\  =  > cosec \:  \alpha  =  \frac{ \sqrt{ {p}^{2} + 1 } }{p - 1}

Answered by XxMissCutiepiexX
23

Given :

\rightarrow \sf {sec ~Ф + tan~ Ф = р}

Solution :

sec \:  \alpha  + tan \:  \alpha  = p \\ \\   {sec}^{2}  \alpha  -  {tan}^{2}  \alpha  = 1 \\  =  > (sec \:  \alpha  - tan  \: \alpha ) \times p = 1 \\  =  > sec \:  \alpha  - tan \:  \alpha  =  \frac{1}{p}

__________

Adding the above 2 equations,

2sec \:  \alpha  = p  +  \frac{1}{p} \\  =  > sec \:  \alpha  =  \frac{ {p}^{2} + 1 }{2p}

__________

cos \:  \alpha  =  \frac{1}{sec \:  \alpha }  \\  =  > cos \:  \alpha  =  \frac{2p}{ {p}^{2}  + 1 }

__________

 {sin}^{2}  \:  \alpha  = 1 -  {cos}^{2}  \alpha  \\  =  >  {sin}^{2} \:  \alpha  = 1 -  \frac{2p}{ {p}^{2} + 1 }  \\  =  > sin \:  \alpha  =  \sqrt{ \frac{ {(p - 1)}^{2} }{ {p}^{2}  + 1} }  \\  =  > sin \:  \alpha  =  \frac{p - 1}{ \sqrt{ {p}^{2} + 1 } }

__________

cosec \:  \alpha  =  \frac{1}{sin \:  \alpha }  \\  \\  =  > cosec \:  \alpha  =  \frac{ \sqrt{ {p}^{2} + 1 } }{p - 1}

Similar questions