If sec theta + tan theta = p
then find the value of cosec theta
Show full solution.
Please help brainly wizards.
Answers
secθ+tanθ=p ----------------------(1)
∵, sec²θ-tan²θ=1
or, (secθ+tanθ)(secθ-tanθ)=1
or, secθ-tanθ=1/p ----------------(2)
Adding (1) and (2) we get,
2secθ=p+1/p
or, secθ=(p²+1)/2p
∴, cosθ=1/secθ=2p/(p²+1)
∴, sinθ=√(1-cos²θ)
=√[1-{2p/(p²+1)}²]
=√[1-4p²/(p²+1)²]
=√[{(p²+1)²-4p²}/(p²+1)²]
=√[(p⁴+2p²+1-4p²)/(p²+1)²]
=√(p⁴-2p²+1)/(p²+1)
=√(p²-1)²/(p²+1)
=(p²-1)/(p²+1)
∴ cosecθ=1/sinθ=1/[(p²-1)/(p²+1)]=(p²+1)/(p²-1)
Answer:
Given , sec theta + tan theta=p------>1
=>sec theta - tan theta=1/p (as (sec theta + tan theta)
(sec theta- tan theta)=1)
------->2
1+2 => 2 sec theta=p^2+1/p----->3
1-2 => 2 tan theta=p^2-1/p------->4
Now do 3/4
=>cosec theta = p^2+1/p^2-1