Math, asked by sanskarikasona, 1 year ago

If sec theta + tan theta = p, then find the value of cosec theta.

Answers

Answered by shadowsabers03
2

             

\huge\boxed{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \huge\boxed{\bold{\csc\theta=\frac{p^2+1}{p^2-1}}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ }

$$\sf{I'm taking \ \theta}$\ \ \sf{as \ A. }

\sec^2 A -\tan^2 A=1 \\ \\ (\sec A+\tan A)(\sec A-\tan A)=1 \\ \\ p(\sec A-\tan A)=1 \\ \\ \\ \sec A-\tan A=\frac{1}{p} \\ \\ \\

(\sec A + \tan A)+(\sec A-\tan A)=p+\frac{1}{p} \\ \\ 2\sec A=\frac{p^2+1}{p} \\ \\ \sec A=\frac{p^2+1}{2p} \\ \\ \\ (\sec A + \tan A)-(\sec A-\tan A)=p-\frac{1}{p} \\ \\ 2\tan A=\frac{p^2-1}{p} \\ \\ \tan A=\frac{p^2-1}{2p}

\tan A=\frac{\sin A}{\cos A} \\ \\ \tan A=\sin A\div \cos A\\ \\ \tan A=\frac{1}{\csc A} \div \frac{1}{\sec A} \\ \\ \tan A=\frac{1}{\csc A} \times \sec A \\ \\ \tan A=\frac{\sec A}{\csc A} \\ \\ \\

\csc A=\frac{\sec A}{\tan A} \\ \\ \\ \csc A=\frac{\frac{p^2+1}{2p}}{\frac{p^2-1}{2p}} \\ \\ \\ \csc A=\frac{p^2+1}{2p} \div \frac{p^2-1}{2p} \\ \\ \\ \csc A=\frac{p^2+1}{2p} \times \frac{2p}{p^2-1} \\ \\ \\ \csc A=\frac{p^2+1}{p^2-1}

$$\sf{Hope this helps. \\ \\ Plz mark it as the brainliest. \\ \\ \\ Thank you. :-)}

Read more on Brainly: https://brainly.in/question/8554586

         


chintu6837: chill mar
shadowsabers03: Kyom???!!! Chor!
Answered by chintu6837
0

\huge\boxed{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \huge\boxed{\bold{\csc\theta=\frac{p^2+1}{p^2-1}}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ }

cscθ=

p

2

−1

p

2

+1

\sf{I'm taking \ \theta}$\ \ \sf{as \ A. }

\begin{lgathered}\sec^2 A -\tan^2 A=1 \\ \\ (\sec A+\tan A)(\sec A-\tan A)=1 \\ \\ p(\sec A-\tan A)=1 \\ \\ \\ \sec A-\tan A=\frac{1}{p} \\ \\ \\\end{lgathered}

sec

2

A−tan

2

A=1

(secA+tanA)(secA−tanA)=1

p(secA−tanA)=1

secA−tanA=

p

1

\begin{lgathered}(\sec A + \tan A)+(\sec A-\tan A)=p+\frac{1}{p} \\ \\ 2\sec A=\frac{p^2+1}{p} \\ \\ \sec A=\frac{p^2+1}{2p} \\ \\ \\ (\sec A + \tan A)-(\sec A-\tan A)=p-\frac{1}{p} \\ \\ 2\tan A=\frac{p^2-1}{p} \\ \\ \tan A=\frac{p^2-1}{2p}\end{lgathered}

(secA+tanA)+(secA−tanA)=p+

p

1

2secA=

p

p

2

+1

secA=

2p

p

2

+1

(secA+tanA)−(secA−tanA)=p−

p

1

2tanA=

p

p

2

−1

tanA=

2p

p

2

−1

\begin{lgathered}\tan A=\frac{\sin A}{\cos A} \\ \\ \tan A=\sin A\div \cos A\\ \\ \tan A=\frac{1}{\csc A} \div \frac{1}{\sec A} \\ \\ \tan A=\frac{1}{\csc A} \times \sec A \\ \\ \tan A=\frac{\sec A}{\csc A} \\ \\ \\\end{lgathered}

tanA=

cosA

sinA

tanA=sinA÷cosA

tanA=

cscA

1

÷

secA

1

tanA=

cscA

1

×secA

tanA=

cscA

secA

\begin{lgathered}\csc A=\frac{\sec A}{\tan A} \\ \\ \\ \csc A=\frac{\frac{p^2+1}{2p}}{\frac{p^2-1}{2p}} \\ \\ \\ \csc A=\frac{p^2+1}{2p} \div \frac{p^2-1}{2p} \\ \\ \\ \csc A=\frac{p^2+1}{2p} \times \frac{2p}{p^2-1} \\ \\ \\ \csc A=\frac{p^2+1}{p^2-1}\end{lgathered}

cscA=

tanA

secA

cscA=

2p

p

2

−1

2p

p

2

+1

cscA=

2p

p

2

+1

÷

2p

p

2

−1

cscA=

2p

p

2

+1

×

p

2

−1

2p

cscA=

p

2

−1

p

2

+1

\sf{Hope this helps. \\ \\ Plz mark it as the brainliest. \\ \\ \\ Thank you. :-)}\end{lgathered}

Read more on Brainly: https://brainly.in/question/8554586


aayuss: sorry i was late for answering
sanskarikasona: @chintu6237 thanks for answering.....but couldn't understand what you wrote...
shadowsabers03: YOU CHEAT!!! WHY DID YOU COPY MY ANSWER, FOOL???!!!
shadowsabers03: HE COPIED MY ANSWER! DUFFER
shadowsabers03: Given are the LaTeX formulae which was written by me!!!
sanskarikasona: really ?
shadowsabers03: Yep!!!
shadowsabers03: Please compare it with my answer. Then you will also get it.
sanskarikasona: i think so IT'S COPIED.....
sanskarikasona: thanks @sanjeevanoonampb4du0 for telling
Similar questions