If sec theta + tan theta = p, then find the value of cosec theta.
Answers
Read more on Brainly: https://brainly.in/question/8554586
\huge\boxed{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \huge\boxed{\bold{\csc\theta=\frac{p^2+1}{p^2-1}}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ }
cscθ=
p
2
−1
p
2
+1
\sf{I'm taking \ \theta}$\ \ \sf{as \ A. }
\begin{lgathered}\sec^2 A -\tan^2 A=1 \\ \\ (\sec A+\tan A)(\sec A-\tan A)=1 \\ \\ p(\sec A-\tan A)=1 \\ \\ \\ \sec A-\tan A=\frac{1}{p} \\ \\ \\\end{lgathered}
sec
2
A−tan
2
A=1
(secA+tanA)(secA−tanA)=1
p(secA−tanA)=1
secA−tanA=
p
1
\begin{lgathered}(\sec A + \tan A)+(\sec A-\tan A)=p+\frac{1}{p} \\ \\ 2\sec A=\frac{p^2+1}{p} \\ \\ \sec A=\frac{p^2+1}{2p} \\ \\ \\ (\sec A + \tan A)-(\sec A-\tan A)=p-\frac{1}{p} \\ \\ 2\tan A=\frac{p^2-1}{p} \\ \\ \tan A=\frac{p^2-1}{2p}\end{lgathered}
(secA+tanA)+(secA−tanA)=p+
p
1
2secA=
p
p
2
+1
secA=
2p
p
2
+1
(secA+tanA)−(secA−tanA)=p−
p
1
2tanA=
p
p
2
−1
tanA=
2p
p
2
−1
\begin{lgathered}\tan A=\frac{\sin A}{\cos A} \\ \\ \tan A=\sin A\div \cos A\\ \\ \tan A=\frac{1}{\csc A} \div \frac{1}{\sec A} \\ \\ \tan A=\frac{1}{\csc A} \times \sec A \\ \\ \tan A=\frac{\sec A}{\csc A} \\ \\ \\\end{lgathered}
tanA=
cosA
sinA
tanA=sinA÷cosA
tanA=
cscA
1
÷
secA
1
tanA=
cscA
1
×secA
tanA=
cscA
secA
\begin{lgathered}\csc A=\frac{\sec A}{\tan A} \\ \\ \\ \csc A=\frac{\frac{p^2+1}{2p}}{\frac{p^2-1}{2p}} \\ \\ \\ \csc A=\frac{p^2+1}{2p} \div \frac{p^2-1}{2p} \\ \\ \\ \csc A=\frac{p^2+1}{2p} \times \frac{2p}{p^2-1} \\ \\ \\ \csc A=\frac{p^2+1}{p^2-1}\end{lgathered}
cscA=
tanA
secA
cscA=
2p
p
2
−1
2p
p
2
+1
cscA=
2p
p
2
+1
÷
2p
p
2
−1
cscA=
2p
p
2
+1
×
p
2
−1
2p
cscA=
p
2
−1
p
2
+1
\sf{Hope this helps. \\ \\ Plz mark it as the brainliest. \\ \\ \\ Thank you. :-)}\end{lgathered}
Read more on Brainly: https://brainly.in/question/8554586