If Sec theta + tan theta=p,then find the value of sin theta in terms of p.
Answers
Answered by
14
We know, sec²A - tan²A = 1
a² - b² = ( a + b )( a - b )
sec²A - tan²A = 1
( secA - tanA )( secA + tanA ) = 1
-------1
( secA - tanA ) p = 1
secA - tanA = 1 / p. ----- 2
Adding 1 & 2 ,
secA + tanA + secA - tanA = p + 1 / p
2 secA = ( p² + 1 ) / p
secA = ( p² + 1 ) / 2p
1 / cosA = ( p² + 1 ) / 2p
cosA = 2p / ( p² + 1 )
Square on both sides,
cos²A = 4p² / ( p² + 1 )²
Multiply by - 1 on both sides,
- cos²A = - 4p² / ( p² + 1 )²
adding 1 on both sides,
1 - cos²A = 1 - 4p² / ( p² + 1 )²
we know, 1 - cos²A = sin²A
sin²A = [ p⁴ + 1 + 2p² - 4p² ] / ( p² + 1 )²
sin²A = [ ( p⁴ + 1 - 2p² ) / ( p² + 1 )²
sin²A = ( p² - 1 )² / ( p² + 1 )²
sinA = ( p² - 1 )( p² + 1 )
a² - b² = ( a + b )( a - b )
sec²A - tan²A = 1
( secA - tanA )( secA + tanA ) = 1
-------1
( secA - tanA ) p = 1
secA - tanA = 1 / p. ----- 2
Adding 1 & 2 ,
secA + tanA + secA - tanA = p + 1 / p
2 secA = ( p² + 1 ) / p
secA = ( p² + 1 ) / 2p
1 / cosA = ( p² + 1 ) / 2p
cosA = 2p / ( p² + 1 )
Square on both sides,
cos²A = 4p² / ( p² + 1 )²
Multiply by - 1 on both sides,
- cos²A = - 4p² / ( p² + 1 )²
adding 1 on both sides,
1 - cos²A = 1 - 4p² / ( p² + 1 )²
we know, 1 - cos²A = sin²A
sin²A = [ p⁴ + 1 + 2p² - 4p² ] / ( p² + 1 )²
sin²A = [ ( p⁴ + 1 - 2p² ) / ( p² + 1 )²
sin²A = ( p² - 1 )² / ( p² + 1 )²
sinA = ( p² - 1 )( p² + 1 )
Similar questions