If sec theta+tan theta=p, then what is the value of sec theta - tan theta=?
Answers
Answered by
0
Answer:
1/p
Step-by-step explanation:
Let, sec^2 theta - tan^2 theta = 1
or, (sec theta + tan theta)*(sec theta - tan theta)= 1
or, sec theta - tan theta = 1/p
Answered by
0
Answer:
Given that secA + tanA=p----(1)
we know that
==sec^2A-tan^2A=1
==(secA +tanA)(secA-tanA)=1
== p(secA-tanA)=1
== (secA-tanA)=1/p-----(2)
from (1) + (2)
secA+tanA=p
secA-tanA=1/p
--------------------
2secA=p+1/p
2secA=p^2+1/p---------(3)
from (1)-(2)
secA+tanA=p
secA-tanA=1/p
(-). (+). (-)
----------------------
2tanA=p-1/p
2tanA=p^2-1/p------------(4)
from (4)/(3)
== 2tanA/2secA=(p^2-1/p)/(p^2+1/p)
== (sinA/cosA)/(1/cosA)=p^2-1/p^2+1
== sinA=p^2-1/p^2+1
Hope this helps you.
Mark this as brainliest.
Similar questions
Math,
5 months ago
Math,
5 months ago
Physics,
10 months ago
Math,
10 months ago
Business Studies,
1 year ago
Social Sciences,
1 year ago
Business Studies,
1 year ago